Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062920

RESUMEN

Sensitive detection and efficient inactivation of pathogenic bacteria are crucial for halting the spread and reproduction of foodborne pathogenic bacteria. Herein, a novel Apt-modified PDMS-ZnO/Ag multifunctional biosensor has been developed for high-sensitivity surface-enhanced Raman scattering (SERS) detection along with photocatalytic sterilization towards Salmonella typhimurium (S. typhimurium). The distribution of the electric field in PDMS-ZnO/Ag with different Ag sputtering times was analyzed using a finite-difference time-domain (FDTD) algorithm. Due to the combined effect of electromagnetic enhancement and chemical enhancement, PDMS-ZnO/Ag exhibited outstanding SERS sensitivity. The limit of detection (LOD) for 4-MBA on the optimal SERS substrate (PZA-40) could be as little as 10-9 M. After PZA-40 was modified with the aptamer, the LOD of the PZA-40-Apt biosensor for detecting S. typhimurium was only 10 cfu/mL. Additionally, the PZA-40-Apt biosensor could effectively inactivate S. typhimurium under visible light irradiation within 10 min, with a bacterial lethality rate (Lb) of up to 97%. In particular, the PZA-40-Apt biosensor could identify S. typhimurium in food samples in addition to having minimal cytotoxicity and powerful biocompatibility. This work provides a multifunctional nanoplatform with broad prospects for selective SERS detection and photocatalytic sterilization of pathogenic bacteria.


Asunto(s)
Técnicas Biosensibles , Salmonella typhimurium , Plata , Espectrometría Raman , Óxido de Zinc , Técnicas Biosensibles/métodos , Espectrometría Raman/métodos , Plata/química , Salmonella typhimurium/efectos de los fármacos , Óxido de Zinc/química , Óxido de Zinc/farmacología , Catálisis , Nanopartículas del Metal/química , Interacciones Hidrofóbicas e Hidrofílicas , Dimetilpolisiloxanos/química , Esterilización/métodos , Límite de Detección
3.
World J Clin Cases ; 12(19): 3931-3935, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38994300

RESUMEN

BACKGROUND: Postoperative abdominal infections are an important and heterogeneous health challenge. Many samll abdominal abscesses are resolved with antibiotics, but larger or symptomatic abscesses may require procedural management. CASE SUMMARY: A 65-year-old male patient who suffered operation for the left hepatocellular carcinoma eight months ago, came to our hospital with recurrent abdominal pain, vomit, and fever for one month. Abdominal computed tomography showed that a big low-density dumbbell-shaped mass among the liver and intestine. Colonoscopy showed a submucosal mass with a fistula at colon of liver region. Gastroscopy showed a big rupture on the submucosal mass at the descending duodenum and a fistula at the duodenal bulb. Under colonoscopy, the brown liquid and pus were drained from the mass with "special stent device". Under gastroscopy, we closed the rupture of the mass with a loop and six clips for purse stitching at the descending duodenum, and the same method as colonoscopy was used to drain the brown liquid and pus from the mass. The symptom of abdominal pain, vomit and fever were relieved after the treatment. CONCLUSION: The special stent device could be effectively for draining the abdominal abscess respectively from colon and duodenum.

4.
World J Clin Cases ; 12(16): 2911-2916, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38899298

RESUMEN

BACKGROUND: Transarterial chemoembolization (TACE) is a standard treatment for intermediate-stage hepatocellular carcinoma (HCC). The complications of TACE include biliary tract infection, liver dysfunction, tumor lysis syndrome, biloma, partial intestinal obstruction, cerebral lipiodol embolism, etc. There are few reports about tracheal fistula induced by TACE. CASE SUMMARY: A 42-year-old man came to our hospital with cough and expectoration for 1 month after TACE for HCC. Laboratory test results showed abnormalities of albumin, hemoglobin, prothrombin time, C-reactive protein, D-dimer, and prothrombin. Culture of both phlegm and liver pus revealed growth of Citrobacter flavescens. Computed tomography showed infection in the inferior lobe of the right lung and a low-density lesion with gas in the right liver. Liver ultrasound showed that there was a big hypoechoic liquid lesion without blood flow signal. Drainage for liver abscess by needle puncture under ultrasonic guidance was performed. After 1 month of drainage and anti-infection therapy, the abscess in the liver and the infection in the lung were reduced obviously, and the symptom of expectoration was relieved. CONCLUSION: Clinicians should be alert to the possibility of complications of liver abscess and tracheal fistula after TACE for HCC. Drainage for liver abscess by needle puncture under ultrasonic guidance could relieve the liver abscess and tracheal fistula.

5.
Int J Immunopathol Pharmacol ; 38: 3946320241260262, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38876119

RESUMEN

INTRODUCTION: TYK2 inhibitors and traditional natural drugs as promising drugs for psoriasis therapy are receiving increasing attention. They both affect different molecules of JAK/STAT pathway, but it is currently unclear whether their combination will enhance the effect on psoriasis. In this study, we used imiquimod (IMQ)-induced psoriasis mouse model to investigate the therapeutic effects of the combined administration of deucravacitinib (TYK2 inhibitor) and shikonin. METHODS: Aldara cream containing 5% IMQ was used to topically treat the dorsal skin of each mouse for a total of six consecutive days to induce psoriasis. The psoriasis area and severity index (PASI) scores were recorded every day. On the 7th day, skin tissues were taken for histopathological examination and the content of cytokines in skin were evaluated. The frequency of immune cells in peripheral blood, spleen and skin were detected through flow cytometry. RESULTS: Compared to the vehicle control group, the psoriasis symptoms and immune disorder improved significantly in the combination therapy group and deucravacitinib treatment group on the 7th day, and the expressions of p-STAT3 and Ki67 in skin were reduced as well. Moreover, the combined treatment of deucravacitinib and shikonin for psoriasis was superior to the monotherapy group, especially in inhibiting abnormal capillaries proliferation, reducing immune cells infiltration and decreasing the concentration of IL-12p70 in skin. CONCLUSION: The combination of deucravacitinib and shikonin is a promising clinical application.


Asunto(s)
Quimioterapia Combinada , Imiquimod , Naftoquinonas , Psoriasis , Piel , Animales , Psoriasis/tratamiento farmacológico , Psoriasis/inducido químicamente , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Ratones , Piel/efectos de los fármacos , Piel/patología , Piel/metabolismo , Modelos Animales de Enfermedad , Citocinas/metabolismo , Ratones Endogámicos BALB C , Masculino , Femenino , Bencimidazoles , Quinolonas
6.
Front Immunol ; 15: 1353695, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765004

RESUMEN

Objectives: This study aimed to analyze active compounds and signaling pathways of CH applying network pharmacology methods, and to additionally verify the molecular mechanism of CH in treating AP. Materials and methods: Network pharmacology and molecular docking were firstly used to identify the active components of CH and its potential targets in the treatment of AP. The pancreaticobiliary duct was retrogradely injected with sodium taurocholate (3.5%) to create an acute pancreatitis (AP) model in rats. Histological examination, enzyme-linked immunosorbent assay, Western blot and TUNEL staining were used to determine the pathway and mechanism of action of CH in AP. Results: Network pharmacological analysis identified 168 active compounds and 276 target proteins. In addition, there were 2060 targets associated with AP, and CH had 177 targets in common with AP. These shared targets, including STAT3, IL6, MYC, CDKN1A, AKT1, MAPK1, MAPK3, MAPK14, HSP90AA1, HIF1A, ESR1, TP53, FOS, and RELA, were recognized as core targets. Furthermore, we filtered out 5252 entries from the Gene Ontology(GO) and 186 signaling pathways from the Kyoto Encyclopedia of Genes and Genomes(KEGG). Enrichment and network analyses of protein-protein interactions predicted that CH significantly affected the PI3K/AKT signaling pathway, which played a critical role in programmed cell death. The core components and key targets showed strong binding activity based on molecular docking results. Subsequently, experimental validation demonstrated that CH inhibited the phosphorylation of PI3K and AKT in pancreatic tissues, promoted the apoptosis of pancreatic acinar cells, and further alleviated inflammation and histopathological damage to the pancreas in AP rats. Conclusion: Apoptosis of pancreatic acinar cells can be enhanced and the inflammatory response can be reduced through the modulation of the PI3K/AKT signaling pathway, resulting in the amelioration of pancreatic disease.


Asunto(s)
Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Pancreatitis , Transducción de Señal , Animales , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo , Pancreatitis/patología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Ratas , Transducción de Señal/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Apoptosis/efectos de los fármacos , Ratas Sprague-Dawley , Mapas de Interacción de Proteínas
8.
Acta Pharm Sin B ; 14(3): 1441-1456, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38487002

RESUMEN

Excessive and uncontrollable inflammatory responses in alveoli can dramatically exacerbate pulmonary disease progressions through vigorous cytokine releases, immune cell infiltration and protease-driven tissue damages. It is an urgent need to explore potential drug strategies for mitigating lung inflammation. Protease-activated receptor 2 (PAR2) as a vital molecular target principally participates in various inflammatory diseases via intracellular signal transduction. However, it has been rarely reported about the role of PAR2 in lung inflammation. This study applied CRISPR-Cas9 system encoding Cas9 and sgRNA (pCas9-PAR2) for PAR2 knockout and fabricated an anionic human serum albumin-based nanoparticles to deliver pCas9-PAR2 with superior inflammation-targeting efficiency and stability (TAP/pCas9-PAR2). TAP/pCas9-PAR2 robustly facilitated pCas9-PAR2 to enter and transfect inflammatory cells, eliciting precise gene editing of PAR2 in vitro and in vivo. Importantly, PAR2 deficiency by TAP/pCas9-PAR2 effectively and safely promoted macrophage polarization, suppressed pro-inflammatory cytokine releases and alleviated acute lung inflammation, uncovering a novel value of PAR2. It also revealed that PAR2-mediated pulmonary inflammation prevented by TAP/pCas9-PAR2 was mainly dependent on ERK-mediated NLRP3/IL-1ß and NO/iNOS signalling. Therefore, this work indicated PAR2 as a novel target for lung inflammation and provided a potential nanodrug strategy for PAR2 deficiency in treating inflammatory diseases.

9.
PLoS One ; 19(3): e0296437, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512878

RESUMEN

Microbially induced calcium carbonate precipitation (MICP) is an environmentally friendly technology that improves soil permeability resistance through biocementation. In this study, 2D microscopic analysis and 3D volume reconstruction were performed on river sand after 24 cycles of bio-treatment based on stacked images and computed tomography (CT) scanning data, respectively, to extract biocementation patterns between particles. Based on the mutual validation findings of the two techniques, three patterns in the biocemented sand were identified as G-C-G, G-C, and G-G. Specifically, 2D microscopic analysis showed that G-C-G featured multi-particle encapsulation and bridging, with a pore filling ratio of 81.2%; G-C was characterized by locally coated particle layers, with a pore filling ratio of 19.7%; and the G-G was marked by sporadic filling of interparticle pores, with a pore filling ratio of 11.7%. G-C-G had the best cementation effect and permeability resistance (effective sealing rate of 68.5%), whereas G-C (effective sealing rate of 2.4%) had a relatively minor contribution to pore-filling and flow sealing. 3D volume reconstruction showed that G-C-G had the highest pore filling rate, followed by G-G and G-C. The average filling ratios of area and volume for G-C-G were 83.979% and 77.257%, respectively; for G-G 20.360% and 23.600%; and for G-C 11.545% and 11.250%. The analysis of the representative element volume (REV) was conducted, and the feasibility and reliability of the micro-scale pattern extraction results were confirmed to guide the analysis of macro-scale characteristics. The exploration of the effectiveness of cementation patterns in fluid sealing provides valuable insights into effective biocementation at the pore scale of porous media, which may inspire future research.


Asunto(s)
Carbonato de Calcio , Arena , Cementación , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X , Precipitación Química
10.
Toxicol Sci ; 199(1): 120-131, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38407484

RESUMEN

The effect of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a persistent environmental pollutant commonly used as a flame retardant in various consumer products, on pancreatitis has not been clearly elucidated, although it has been reported to be toxic to the liver, nervous system, and reproductive system. Acute pancreatitis (AP) and chronic pancreatitis (CP) models were induced in this study by intraperitoneal injection of caerulein. The aim was to investigate the impact of BDE-47 on pancreatitis by exposing the animals to acute (1 week) or chronic (8 weeks) doses of BDE-47 (30 mg/kg in the low-concentration group and 100 mg/kg in the high-concentration group). Additionally, BDE-47 was utilized to stimulate mouse bone marrow-derived macrophages, pancreatic primary stellate cells, and acinar cells in order to investigate the impact of BDE-47 on pancreatitis. In vivo experiments conducted on mice revealed that chronic exposure to BDE-47, rather than acute exposure, exacerbated the histopathological damage of AP and CP, leading to elevated fibrosis in pancreatic tissue and increased infiltration of inflammatory cells in the pancreas. In vitro experiments showed that BDE-47 can promote the expression of the inflammatory cytokines Tnf-α and Il-6 in M1 macrophages, as well as promote acinar cell apoptosis through the activation of the PERK and JNK pathways via endoplasmic reticulum stress. The findings of this study imply chronic exposure to BDE-47 may exacerbate the progression of both AP and CP by inducing acinar cell apoptosis and dysregulating inflammatory responses.


Asunto(s)
Células Acinares , Apoptosis , Éteres Difenilos Halogenados , Pancreatitis Crónica , Pancreatitis , Animales , Éteres Difenilos Halogenados/toxicidad , Apoptosis/efectos de los fármacos , Pancreatitis Crónica/inducido químicamente , Pancreatitis Crónica/patología , Células Acinares/efectos de los fármacos , Células Acinares/patología , Células Acinares/metabolismo , Masculino , Pancreatitis/inducido químicamente , Pancreatitis/patología , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones , Ceruletida/toxicidad , Páncreas/efectos de los fármacos , Páncreas/patología , Inflamación/inducido químicamente , Inflamación/patología , Células Estrelladas Pancreáticas/efectos de los fármacos , Células Estrelladas Pancreáticas/patología , Células Estrelladas Pancreáticas/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Retardadores de Llama/toxicidad , Células Cultivadas
11.
Microb Cell Fact ; 23(1): 55, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368340

RESUMEN

BACKGROUND: Pichia pastoris is a widely utilized host for heterologous protein expression and biotransformation. Despite the numerous strategies developed to optimize the chassis host GS115, the potential impact of changes in cell wall polysaccharides on the fitness and performance of P. pastoris remains largely unexplored. This study aims to investigate how alterations in cell wall polysaccharides affect the fitness and function of P. pastoris, contributing to a better understanding of its overall capabilities. RESULTS: Two novel mutants of GS115 chassis, H001 and H002, were established by inactivating the PAS_chr1-3_0225 and PAS_chr1-3_0661 genes involved in ß-glucan biosynthesis. In comparison to GS115, both modified hosts exhibited a looser cell surface and larger cell size, accompanied by faster growth rates and higher carbon-to-biomass conversion ratios. When utilizing glucose, glycerol, and methanol as exclusive carbon sources, the carbon-to-biomass conversion rates of H001 surpassed GS115 by 10.00%, 9.23%, and 33.33%, respectively. Similarly, H002 exhibited even higher increases of 32.50%, 12.31%, and 53.33% in carbon-to-biomass conversion compared to GS115 under the same carbon sources. Both chassis displayed elevated expression levels of green fluorescent protein (GFP) and human epidermal growth factor (hegf). Compared to GS115/pGAPZ A-gfp, H002/pGAPZ A-gfp showed a 57.64% higher GFP expression, while H002/pPICZα A-hegf produced 66.76% more hegf. Additionally, both mutant hosts exhibited enhanced biosynthesis efficiencies of S-adenosyl-L-methionine and ergothioneine. H001/pGAPZ A-sam2 synthesized 21.28% more SAM at 1.14 g/L compared to GS115/pGAPZ A-sam2, and H001/pGAPZ A-egt1E obtained 45.41% more ERG at 75.85 mg/L. The improved performance of H001 and H002 was likely attributed to increased supplies of NADPH and ATP. Specifically, H001 and H002 exhibited 5.00-fold and 1.55-fold higher ATP levels under glycerol, and 6.64- and 1.47-times higher ATP levels under methanol, respectively, compared to GS115. Comparative lipidomic analysis also indicated that the mutations generated richer unsaturated lipids on cell wall, leading to resilience to oxidative damage. CONCLUSIONS: Two novel P. pastoris chassis hosts with impaired ß-1,3-D-glucan biosynthesis were developed, showcasing enhanced performances in terms of growth rate, protein expression, and catalytic capabilities. These hosts exhibit the potential to serve as attractive alternatives to P. pastoris GS115 for various bioproduction applications.


Asunto(s)
Metanol , Pichia , Saccharomycetales , Humanos , Pichia/metabolismo , Metanol/metabolismo , Glicerol/metabolismo , Adenosina Trifosfato/metabolismo , Carbono/metabolismo , Pared Celular/metabolismo , Polisacáridos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
ACS Pharmacol Transl Sci ; 7(1): 274-284, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38230283

RESUMEN

The management of wounds remains a significant healthcare challenge, highlighting the need for effective wound healing strategies. To address this, it is crucial to explore the molecular mechanisms underlying tissue repair as well as explore potential therapeutic approaches. Trypsin, as a serine protease, has been clinically utilized for wound healing for decades; however, it still lacks systemic investigation on its role and related mechanism. This study aimed to investigate the effects of low-dose trypsin on wound healing both in vitro and in vivo. While trypsin is an endogenous stimulus for protease-activated receptor 2 (PAR2), we discovered that both low-dose trypsin and synthesized PAR2 agonists significantly enhanced the migration, adhesion, and proliferation of fibroblasts and macrophages, similar to the natural repair mechanism mediated by mast cell tryptase. Moreover, such cell functions induced by trypsin were largely inhibited by PAR2 blockade, indicating the participation of trypsin via PAR2 activation. Additionally, low-dose trypsin notably expedited healing and regeneration while enhancing collagen deposition in skin wounds in vivo. Importantly, upon stimulation of trypsin or PAR2 agonists, there were significant upregulations of genes including claudin-7 (Cldn7), occludin (Ocln), and interleukin-17A (IL-17A) associated with proliferation and migration, extracellular matrix (ECM), tight junction, and focal adhesion, which contributed to wound healing. In summary, our study suggested that a low-dose trypsin could be a promising strategy for wound healing, and its function was highly dependent on PAR2 activation.

13.
Curr Med Imaging ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38254320

RESUMEN

BACKGROUND: Acquired immune deficiency syndrome (AIDS) associated with eosinophilic gastroenteritis is rare. We report a case of duodenal "stone" inducing acute pancreatitis with eosinophilic gastroduodenitis in an AIDS patient. CASE SUMMARY: A 73-year-old female AIDS patient came to the hospital with recurrent abdominal pain for 20 days. Computed tomography (CT) showed pancreatitis with exudation and a high-density shadow under the gastric antrum. Gastroscopy showed that the descending part of the duodenum was blocked by a "stone". The mucosa of the duodenum was rough, and a red polyp was found on the gastric body. The pathology result was chronic inflammation with eosinophilic granulocytes in the duodenal mucosa and gastric body polyp. CONCLUSION: When AIDS patients suffer acute pancreatitis, the possibility of eosinophilic gastroenteritis needs to be considered to enable the patient to accept timely treatment.

14.
Med Res Rev ; 44(2): 738-811, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37990647

RESUMEN

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.


Asunto(s)
COVID-19 , Vacunas , Humanos , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , SARS-CoV-2 , Enfermedad Crítica , Citocinas , Antivirales/farmacología , Antivirales/uso terapéutico
15.
J Biol Chem ; 300(2): 105614, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159863

RESUMEN

The activation and mobilization of immune cells play a crucial role in immunotherapy. Existing therapeutic interventions, such as cytokines administration, aim to enhance immune cell activity. However, these approaches usually result in modest effectiveness and toxic side effects, thereby restricting their clinical application. Protease-activated receptors (PARs), a subfamily of G protein-coupled receptors, actively participate in the immune system by directly activating immune cells. The activation of PARs by proteases or synthetic ligands can modulate immune cell behavior, signaling, and responses to treat immune-related diseases, suggesting the significance of PARs agonism in immunotherapy. However, the agonism of PARs in therapeutical applications remains rarely discussed, since it has been traditionally considered that PARs activation facilitates disease progressions. This review aims to comprehensively summarize the activation, rather than inhibition, of PARs in immune-related physiological responses and diseases. Additionally, we will discuss the emerging immunotherapeutic potential of PARs agonism, providing a new strategic direction for PARs-mediated immunotherapy.


Asunto(s)
Inmunoterapia , Receptores Proteinasa-Activados , Péptido Hidrolasas/metabolismo , Receptores Acoplados a Proteínas G , Receptores Proteinasa-Activados/agonistas , Receptores Proteinasa-Activados/metabolismo , Transducción de Señal , Neoplasias/inmunología , Neoplasias/terapia , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/terapia , Humanos , Animales
16.
ACS Nano ; 17(21): 21782-21798, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37922196

RESUMEN

mRNA antigens require powerful nanocarriers for efficient delivery, as well as immunomodulators for controlling their excessive immunogenicity. While lipid nanoparticles (LNPs) used in mRNA vaccines exhibited systemic toxicity, there is an urgent need for developing potential nanoparticles with strong immunoenhancing effects for mRNA antigens. Although natural polysaccharides as adjuvants assisted various types of antigens in triggering potent immune responses, they have been rarely investigated in mRNA vaccines. Here, we constructed four polysaccharide nanoparticles with different molecular weights (MWs) to deliver and protect mRNA antigens, and boosted antigen cross-presentation, DC maturation, CD4+/CD8+T cell responses and humoral immune responses. Importantly, the immunoenhancing capacities of polysaccharide nanoparticles were highly dependent on their MW properties. CS NPs with high MW initiated stimulator of interferon genes (STING)-mediated autophagy and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome signaling, consequently possessing superior mRNA antigen-specific immune responses in vitro and in vivo. In contrast, CS NPs with low MWs induced NLRP3 signaling without STING or autophagy activation, which failed to induce robust immune responses. Therefore, it uncovered the MW-dependent immunoenhancing effects and mechanism of polysaccharide nanoparticles, providing a platform for designing potential nanosized polysaccharide immunomodulators for mRNA vaccines.


Asunto(s)
Interferones , Nanopartículas , Interferones/farmacología , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Antígenos , Adyuvantes Inmunológicos/farmacología , Polisacáridos/farmacología , Presentación de Antígeno , Vacunas de ARNm
17.
Int J Immunopathol Pharmacol ; 37: 3946320231206966, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37847172

RESUMEN

Acetaldehyde dehydrogenases (ALDH) 1B1 is associated with a poor prognosis in pancreatic cancer, colorectal cancer, and osteosarcoma. Overexpression of ALDH also impairs tumor immunity. However, it is unclear how ALDH1B1 is associated with patient prognosis and immune infiltration in different cancer types. This is an original research based on bioinformatics analysis. In this study, we investigated the expression and prognostic value of ALDH1B1 in pan-cancer specimens using several databases, including GEPIA2 and Kaplan-Meier Plotter. The GEPIA2 and TIMER2 databases were used to explore correlations between ALDH1B1 expression and immune infiltration in cancers, especially head and neck squamous cell carcinoma (HNSC) and stomach adenocarcinoma (STAD). Finally, the expression of ALDH1B1 was validated by qPCR and immunohistochemistry. The expression of ALDH1B1 differed in most cancers compared to normal tissue controls. ALDH1B1 has an important impact on the prognosis different cancer types, and the high expression of ALDH1B1 is inversely associated with survival in patients with HNSC. A significant positive correlation was identified between ALDH1B1 expression in HNSC and immune infiltration. The poor prognosis associated with high expression of ALDH1B1 may be related to the promotion of M2 polarization of tumor-associated macrophages. Furthermore, markers of immune cell infiltration, such as exhausted T cells and regulatory T cells showed different patterns of ALDH1B1-associated immune infiltration. ALDH1B1 can serve as a prognostic biomarker in pan-cancer types and is correlated with immune infiltration.


Asunto(s)
Neoplasias Óseas , Neoplasias Pancreáticas , Humanos , Pronóstico , Aldehído Oxidorreductasas/genética
18.
J Control Release ; 363: 733-746, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37827223

RESUMEN

Metastasis is one of the most significant causes for deterioration of breast cancer, contributing to the clinical failure of anti-tumour drugs. Excessive inflammatory responses intensively promote the occurrence and development of tumour, while protease-activated receptor 2 (PAR2) as a cell membrane receptor actively participates in both tumour cell functions and inflammatory responses. However, rare investigations linked PAR2-mediated inflammatory environment to tumour progression. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology is an emerging and powerful gene editing technique and can be applied for probing the new role of PAR2 in breast cancer metastasis, but it still needs the development of an efficient and safe delivery system. This work constructed anionic bovine serum albumin (BSA) nanoparticles to encapsulate CRISPR/Cas9 plasmid encoding PAR2 sgRNA and Cas9 (tBSA/Cas9-PAR2) for triggering PAR2 deficiency. tBSA/Cas9-PAR2 remarkably promoted CRISPR/Cas9 to enter and transfect both inflammatory and cancer cells, initiating precise PAR2 gene editing in vitro and in vivo. PAR2 deficiency by tBSA/Cas9-PAR2 effectively suppressed NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome signalling in inflammatory microenvironment to magnify stimulator of interferon genes (STING) signalling, reactive oxygen species (ROS) accumulation and epithelial-mesenchymal transition (EMT) reversal, consequently preventing breast cancer metastasis. Therefore, this study not only demonstrated the involvement and underlying mechanism of PAR2 in tumour progression via modulating inflammatory microenvironment, but also suggested PAR2 deficiency by tBSA/Cas9-PAR2 as an attractive therapeutic strategy candidate for breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Sistemas CRISPR-Cas , Receptor PAR-2/genética , ARN Guía de Sistemas CRISPR-Cas , Edición Génica/métodos , Proteína 9 Asociada a CRISPR/genética , Neoplasias de la Mama/genética , Microambiente Tumoral
19.
Funct Integr Genomics ; 23(3): 284, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37648881

RESUMEN

Hepatocellular carcinoma (HCC) is the tumor with the second highest mortality rate worldwide. Recent research data show that KIF11, a member of the kinesin family (KIF), plays an important role in the progression of various tumors. However, its expression and molecular mechanism in HCC remain elusive. Here, we evaluated the potential role of KIF11 in HCC. The effect of KIF11 was evaluated using the hepatocellular carcinoma cell lines, LM3 and Huh7, after genetic or pharmacological treatment. Evaluating the role of KIF11 in the xenograft animal models using its specific inhibitor. The role of KIF11 was systematically evaluated using specimens obtained from the aforementioned animal and cell models after various in vivo and in vitro experiments. The clinicopathological analysis showed that KIF11 was expressed at high levels in patients with hepatocellular carcinoma. Cell experiments in vitro showed that KIF11 deficiency significantly slowed the proliferation of liver tumor cells. And in the experiment using liver cancer cells overexpressing OCT4, overexpression of OCT4 substantially increased the proliferation of tumor cells compared with tumor cells with KIF11 knockdown alone. Both in vitro cell experiment and in vivo xenotransplantation tumor experiment showed that monastrol, an inhibitor of KIF11, could effectively delay the proliferation and migration of tumor cells. Based on these results, KIF11 is expressed at high levels in hepatocellular carcinoma and promotes tumor proliferation in an OCT4-dependent manner. KIF11 may become a therapeutic target for hepatocellular carcinoma, and its inhibitor monastrol may become a clinical antitumor drug.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Carcinoma Hepatocelular/genética , Cinesinas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Familia
20.
Acta Biomater ; 169: 1-18, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517621

RESUMEN

G protein-coupled receptors (GPCRs), as the largest family of membrane receptors, actively modulate plasma membrane and endosomal signalling. Importantly, GPCRs are naturally nanosized, and spontaneously formed nanoaggregates of GPCRs (natural nano-GPCRs) may enhance GPCR-related signalling and functions. Although GPCRs are the molecular targets of the majority of marketed drugs, the poor pharmacokinetics and physicochemical properties of GPCR ligands greatly limit their clinical applicability. Nanotechnology, as versatile techniques, can encapsulate GPCR ligands to assemble synthetic nano-GPCRs to overcome their obstacles, robustly elevating drug efficacy and safety. Moreover, endosomal delivery of GPCR ligands by nanoparticles can precisely initiate sustained endosomal signal transduction, while nanotechnology has been widely utilized for isolation, diagnosis, and detection of GPCRs. In turn, due to overexpression of GPCRs on the surface of various types of cells, GPCR ligands can endow nanoparticles with active targeting capacity for specific cells via ligand-receptor binding and mediate receptor-dependent endocytosis of nanoparticles. This significantly enhances the potency of nanoparticle delivery systems. Therefore, emerging evidence has revealed the interplay between GPCRs and nanoparticles, although investigations into their relationship have been inadequate. This review aims to summarize the interaction between GPCRs and nanotechnology for understanding their mutual influences and utilizing their interplay for biomedical applications. It will provide a fundamental platform for developing powerful and safe GPCR-targeted drugs and nanoparticle systems. STATEMENT OF SIGNIFICANCE: GPCRs as molecular targets for the majority of marketed drugs are naturally nanosized, and even spontaneously form nano aggregations (nano-GPCRs). Nanotechnology has also been applied to construct synthetic nano-GPCRs or detect GPCRs, while endosomal delivery of GPCR ligands by nanoparticles can magnify endosomal signalling. Meanwhile, molecular engineering of nanoparticles with GPCRs or their ligands can modulate membrane binding and endocytosis, powerfully improving the efficacy of nanoparticle system. However, there are rare summaries on the interaction between GPCRs and nanoparticles. This review will not only provide a versatile platform for utilizing nanoparticles to modulate or detect GPCRs, but also facilitate better understanding of the designated value of GPCRs for molecular engineering of biomaterials with GPCRs in therapeutical application.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo , Ligandos , Membrana Celular/metabolismo , Nanotecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA