Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Cell Rep ; 43(5): 114169, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678562

RESUMEN

Sympathetic innervation of brown adipose tissue (BAT) controls mammalian adaptative thermogenesis. However, the cellular and molecular underpinnings contributing to BAT innervation remain poorly defined. Here, we show that smooth muscle cells (SMCs) support BAT growth, lipid utilization, and thermogenic plasticity. Moreover, we find that BAT SMCs express and control the bioavailability of Cxcl12. SMC deletion of Cxcl12 fosters brown adipocyte lipid accumulation, reduces energy expenditure, and increases susceptibility to diet-induced metabolic dysfunction. Mechanistically, we find that Cxcl12 stimulates CD301+ macrophage recruitment and supports sympathetic neuronal maintenance. Administering recombinant Cxcl12 to obese mice or leptin-deficient (Ob/Ob) mice is sufficient to boost macrophage presence and drive sympathetic innervation to restore BAT morphology and thermogenic responses. Altogether, our data reveal an SMC chemokine-dependent pathway linking immunological infiltration and sympathetic innervation as a rheostat for BAT maintenance and thermogenesis.

2.
Dev Cell ; 59(10): 1233-1251.e5, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38569546

RESUMEN

De novo brown adipogenesis holds potential in combating the epidemics of obesity and diabetes. However, the identity of brown adipocyte progenitor cells (APCs) and their regulation have not been extensively explored. Here, through in vivo lineage tracing and mouse modeling, we observed that platelet-derived growth factor receptor beta (PDGFRß)+ pericytes give rise to developmental brown adipocytes but not to those in adult homeostasis. By contrast, T-box 18 (TBX18)+ pericytes contribute to brown adipogenesis throughout both developmental and adult stages, though in a depot-specific manner. Mechanistically, Notch inhibition in PDGFRß+ pericytes promotes brown adipogenesis by downregulating PDGFRß. Furthermore, inhibition of Notch signaling in PDGFRß+ pericytes mitigates high-fat, high-sucrose (HFHS)-induced glucose and metabolic impairment in mice during their development and juvenile phases. Collectively, these findings show that the Notch/PDGFRß axis negatively regulates developmental brown adipogenesis, and its repression promotes brown adipose tissue expansion and improves metabolic health.


Asunto(s)
Adipocitos Marrones , Adipogénesis , Diferenciación Celular , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Receptores Notch , Células Madre , Animales , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptores Notch/metabolismo , Ratones , Adipocitos Marrones/metabolismo , Adipocitos Marrones/citología , Células Madre/metabolismo , Células Madre/citología , Transducción de Señal , Pericitos/metabolismo , Pericitos/citología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/citología , Ratones Endogámicos C57BL , Masculino
3.
Mol Cell Biochem ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430300

RESUMEN

While P21-activated kinase-1 (PAK1) has been extensively studied in relation to cardiovascular health and glucose metabolism, its roles within adipose tissue and cardiometabolic diseases are less understood. In this study, we explored the effects of PAK1 deletion on energy balance, adipose tissue homeostasis, and cardiac function utilizing a whole-body PAK1 knockout (PAK1-/-) mouse model. Our findings revealed that body weight differences between PAK1-/- and WT mice emerged at 9 weeks of age, with further increases observed at 12 weeks. Furthermore, PAK1-/- mice displayed increased fat mass and decreased lean mass at 12 weeks, indicating a shift towards adiposity. In conjunction with the increased body weight, PAK1-/- mice had increased food intake and reduced energy expenditure. At a mechanistic level, PAK1 deletion boosted the expression of lipogenic markers while diminishing thermogenic markers expression in adipose tissues, contributing to reduced energy expenditure and the overall obesogenic phenotype. Moreover, our findings highlighted a significant impact on cardiac function following PAK1 deletion, including alterations in calcium kinetics and compromised systolic and lusitropy functions. In summary, our study emphasizes the significant role of PAK1 in weight regulation and cardiac function, enriching our comprehension of heart health and metabolism. These findings could potentially facilitate the identification of novel therapeutic targets in cardiometabolic diseases.

4.
J Ethnopharmacol ; 326: 117927, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38373665

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei Yanghe Decoction (JWYHD) is modified Yanghe Decoction (YHD). YHD historically utilized as a potent medicinal solution for addressing chronic inflammatory conditions, holds promising therapeutic potential in the treatment of asthma. However, the mechanisms underlying JWYHD's effects on allergic asthma remain unclear. AIM OF THE STUDY: To investigate the therapeutic effect as well as the underlying mechanisms of JWYHD on asthmatic mice. MATERIALS AND METHODS: The ovalbumin (OVA)-induced mouse model was utilized, followed by the administration of JWYHD to allergic asthmatic mice. Subsequently, inflammatory cells in the bronchoalveolar lavage fluid (BALF) and lung tissues were conducted. The levels of various cytokines including interleukin (IL)-4, IL-5, IL-13, IL-33, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in BALF, as well as the total immunoglobulin E (IgE) content in serum, were assessed. Lung function and tissue pathology examinations were performed to assess the protective impacts of JWYHD. The chemical components of JWYHD and its lung prototype compounds (referred to the chemical components present in JWYHD that were observed in the lung) were explored by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). RNA-seq analysis revealed the regulation mechanisms of JWYHD treating asthma. Furthermore, the effect of JWYHD on type 2 innate lymphoid cells (ILC2s) in asthmatic mice was detected by flow cytometry and Smart-RNA-seq analysis. Then molecular docking analysis was used to show the interaction between identified compounds and key targets. RESULTS: JWYHD significantly attenuated the airway inflammation of asthmatic mice, reduced the levels of inflammatory cells in BALF, as well the levels of the cytokines IL-4, IL-5, IL-13, IL-33, and TNF-α in BALF and IgE in serum. Airway hyperresponsiveness (AHR) and lung inflammation infiltration were also alleviated by JWYHD. Moreover, RNA-seq analysis revealed that JWYHD attenuated airway inflammation in asthmatic mice via regulating immunity. Flow cytometry confirmed that JWYHD could inhibit ILC2 responses. ILC2 Smart-RNA-seq analysis showed that JWYHD impaired the inflammation reaction-related signaling pathways in ILC2s, and neuropilin-1 (Nrp1), endothelial transcription factor 3 (GATA3) and interleukin 1 receptor like protein 1 (ST2) might be the key targets. The molecular docking analysis investigating the connection between the primary targets and JWYHD's prototype compounds in the lung demonstrated that liquiritin apioside, icariin, glycyrrhizic acid, and uralsaponin B, identified through UPLC-Q-TOF/MS, exhibited significant affinity in binding to the mentioned key targets. CONCLUSION: Our results suggested that the mechanism of JWYHD in treating asthma might be related to limiting ILC2 responses. Our findings provided some pharmacological evidence for the clinical application of JWYHD in the treatment of asthma.


Asunto(s)
Asma , Medicamentos Herbarios Chinos , Inmunidad Innata , Ratones , Animales , Interleucina-33 , Interleucina-13 , Interleucina-5 , Simulación del Acoplamiento Molecular , Linfocitos/metabolismo , Pulmón , Inflamación/tratamiento farmacológico , Inflamación/patología , Citocinas/metabolismo , Líquido del Lavado Bronquioalveolar , Inmunoglobulina E , Ovalbúmina/farmacología , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
5.
iScience ; 27(1): 108682, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38235323

RESUMEN

White adipose tissue (WAT) development and adult homeostasis rely on distinct adipocyte progenitor cells (APCs). While adult APCs are defined early during embryogenesis and generate adipocytes after WAT organogenesis, the mechanisms underlying adult adipose lineage determination and preservation remain undefined. Here, we uncover a critical role for platelet-derived growth factor receptor beta (Pdgfrß) in identifying the adult APC lineage. Without Pdgfrß, APCs lose their adipogenic competency to incite fibrotic tissue replacement and inflammation. Through lineage tracing analysis, we reveal that the adult APC lineage is lost and develops into macrophages when Pdgfrß is deleted embryonically. Moreover, to maintain the APC lineage, Pdgfrß activation stimulates p38/MAPK phosphorylation to promote APC proliferation and maintains the APC state by phosphorylating peroxisome proliferator activated receptor gamma (Pparγ) at serine 112. Together, our findings identify a role for Pdgfrß acting as a rheostat for adult adipose lineage confinement to prevent unintended lineage switches.

6.
Sci Total Environ ; 915: 169962, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38219999

RESUMEN

BACKGROUND: Exposure to semi-volatile organic compounds (SVOCs) may link to thyroid nodule risk, but studies of mixed-SVOCs exposure effects are lacking. Traditional analytical methods are inadequate for dealing with mixed exposures, while machine learning (ML) seems to be a good way to fill the gaps in the field of environmental epidemiology research. OBJECTIVES: Different ML algorithms were used to explore the relationship between mixed-SVOCs exposure and thyroid nodule. METHODS: A 1:1:1 age- and gender-matched case-control study was conducted in which 96 serum SVOCs were measured in 50 papillary thyroid carcinoma (PTC), 50 nodular goiters (NG), and 50 controls. Different ML techniques such as Random Forest, AdaBoost were selected based on their predictive power, and variables were selected based on their weights in the models. Weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were used to assess the mixed effects of the SVOCs exposure on thyroid nodule. RESULTS: Forty-three of 96 SVOCs with detection rate >80 % were included in the analysis. ML algorithms showed a consistent selection of SVOCs associated with thyroid nodule. Fluazifop-butyl and fenpropathrin are positively associated with PTC and NG in single compound models (all P < 0.05). WQS model shows that exposure to mixed-SVOCs was associated with an increased risk of PTC and NG, with the mixture dominated by fenpropathrin, followed by fluazifop-butyl and propham. In the BKMR model, mixtures showed a significant positive association with thyroid nodule risk at high exposure levels, and fluazifop-butyl showed positive effects associated with PTC and NG. CONCLUSION: This study confirms the feasibility of ML methods for variable selection in high-dimensional complex data and showed that mixed exposure to SVOCs was associated with increased risk of PTC and NG. The observed association was primarily driven by fluazifop-butyl and fenpropathrin. The findings warranted further investigation.


Asunto(s)
Contaminantes Ambientales , Bocio Nodular , Piretrinas , Neoplasias de la Tiroides , Nódulo Tiroideo , Compuestos Orgánicos Volátiles , Humanos , Cáncer Papilar Tiroideo , Bocio Nodular/patología , Estudios de Casos y Controles , Teorema de Bayes , Algoritmos , Aprendizaje Automático
7.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37889998

RESUMEN

Tra1 is an essential coactivator protein of the yeast SAGA and NuA4 acetyltransferase complexes that regulate gene expression through multiple mechanisms including the acetylation of histone proteins. Tra1 is a pseudokinase of the PIKK family characterized by a C-terminal PI3K domain with no known kinase activity. However, mutations of specific arginine residues to glutamine in the PI3K domains (an allele termed tra1Q3) result in reduced growth and increased sensitivity to multiple stresses. In the opportunistic fungal pathogen Candida albicans, the tra1Q3 allele reduces pathogenicity and increases sensitivity to the echinocandin antifungal drug caspofungin, which disrupts the fungal cell wall. Here, we found that compromised Tra1 function, in contrast to what is seen with caspofungin, increases tolerance to the azole class of antifungal drugs, which inhibits ergosterol synthesis. In C. albicans, tra1Q3 increases the expression of genes linked to azole resistance, such as ERG11 and CDR1. CDR1 encodes a multidrug ABC transporter associated with efflux of multiple xenobiotics, including azoles. Consequently, cells carrying tra1Q3 show reduced intracellular accumulation of fluconazole. In contrast, a tra1Q3 Saccharomyces cerevisiae strain displayed opposite phenotypes: decreased tolerance to azole, decreased expression of the efflux pump PDR5, and increased intracellular accumulation of fluconazole. Therefore, our data provide evidence that Tra1 differentially regulates the antifungal response across yeast species.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Azoles/farmacología , Azoles/metabolismo , Fluconazol/farmacología , Fluconazol/metabolismo , Caspofungina , Filogenia , Candida albicans/genética , Candida albicans/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Histona Acetiltransferasas/química
8.
Metabolism ; 151: 155740, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37995805

RESUMEN

BACKGROUND & AIMS: Dysbiosis contributes to alcohol-associated liver disease (ALD); however, the precise mechanisms remain elusive. Given the critical role of the gut microbiota in ammonia production, we herein aim to investigate whether and how gut-derived ammonia contributes to ALD. METHODS: Blood samples were collected from human subjects with/without alcohol drinking. Mice were exposed to the Lieber-DeCarli isocaloric control or ethanol-containing diets with and without rifaximin (a nonabsorbable antibiotic clinically used for lowering gut ammonia production) supplementation for five weeks. Both in vitro (NH4Cl exposure of AML12 hepatocytes) and in vivo (urease administration for 5 days in mice) hyperammonemia models were employed. RNA sequencing and fecal amplicon sequencing were performed. Ammonia and triglyceride concentrations were measured. The gene and protein expression of enzymes involved in multiple pathways were measured. RESULTS: Chronic alcohol consumption causes hyperammonemia in both mice and human subjects. In healthy livers and hepatocytes, ammonia exposure upregulates the expression of urea cycle genes, elevates hepatic de novo lipogenesis (DNL), and increases fat accumulation. Intriguingly, ammonia promotes ethanol catabolism and acetyl-CoA formation, which, together with ammonia, synergistically facilitates intracellular fat accumulation in hepatocytes. Mechanistic investigations uncovered that ATF4 activation, as a result of ER stress induction and general control nonderepressible 2 activation, plays a central role in ammonia-provoked DNL elevation. Rifaximin ameliorates ALD pathologies in mice, concomitant with blunted hepatic ER stress induction, ATF4 activation, and DNL activation. CONCLUSIONS: An overproduction of ammonia by gut microbiota, synergistically interacting with ethanol, is a significant contributor to ALD pathologies.


Asunto(s)
Amoníaco , Hígado Graso , Hiperamonemia , Hepatopatías Alcohólicas , Animales , Humanos , Ratones , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Amoníaco/efectos adversos , Amoníaco/metabolismo , Etanol/efectos adversos , Etanol/metabolismo , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo , Hiperamonemia/complicaciones , Hiperamonemia/metabolismo , Hiperamonemia/patología , Lipogénesis , Hígado/metabolismo , Hepatopatías Alcohólicas/metabolismo , Ratones Endogámicos C57BL , Rifaximina/farmacología
9.
Mol Neurodegener ; 18(1): 82, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950311

RESUMEN

The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Modelos Animales de Enfermedad , Tauopatías/genética , Tauopatías/metabolismo , Caenorhabditis elegans/metabolismo , Drosophila/metabolismo
10.
Biomolecules ; 13(11)2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-38002276

RESUMEN

Although amphiphilic chitosan has been widely studied as a drug carrier for drug delivery, fewer studies have been conducted on the antimicrobial activity of amphiphilic chitosan. In this study, we successfully synthesized deoxycholic acid-modified chitosan (CS-DA) by grafting deoxycholic acid (DA) onto chitosan C2-NH2, followed by grafting succinic anhydride, to prepare a novel amphiphilic chitosan (CS-DA-SA). The substitution degree was 23.93% for deoxycholic acid and 29.25% for succinic anhydride. Both CS-DA and CS-DA-SA showed good blood compatibility. Notably, the synthesized CS-DA-SA can self-assemble to form nanomicelles at low concentrations in an aqueous environment. The results of CS, CS-DA, and CS-DA-SA against Escherichia coli and Staphylococcus aureus showed that CS-DA and CS-DA-SA exhibited stronger antimicrobial effects than CS. CS-DA-SA may exert its antimicrobial effect by disrupting cell membranes or forming a membrane on the cell surface. Overall, the novel CS-DA-SA biomaterials have a promising future in antibacterial therapy.


Asunto(s)
Quitosano , Quitosano/farmacología , Anhídridos Succínicos , Micelas , Antibacterianos/farmacología , Ácido Desoxicólico/farmacología
11.
bioRxiv ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693431

RESUMEN

Thermogenic beige adipocytes are recognized as potential therapeutic targets for combating metabolic diseases. However, the metabolic advantages they offer are compromised with aging. Here, we show that treating mice with estrogen (E2), a hormone that decreases with age, to mice can counteract the aging- related decline in beige adipocyte formation when subjected to cold, while concurrently enhancing energy expenditure and improving glucose tolerance. Mechanistically, we find that nicotinamide phosphoribosyltranferase (NAMPT) plays a pivotal role in facilitating the formation of E2-induced beige adipocytes, which subsequently suppresses the onset of age-related ER stress. Furthermore, we found that targeting NAMPT signaling, either genetically or pharmacologically, can restore the formation of beige adipocytes by increasing the number of perivascular adipocyte progenitor cells. Conversely, the absence of NAMPT signaling prevents this process. In conclusion, our findings shed light on the mechanisms governing the age-dependent impairment of beige adipocyte formation and underscore the E2-NAMPT controlled ER stress as a key regulator of this process. Highlights: Estrogen restores beige adipocyte failure along with improved energy metabolism in old mice.Estrogen enhances the thermogenic gene program by mitigating age-induced ER stress.Estrogen enhances the beige adipogenesis derived from SMA+ APCs.Inhibiting the NAMPT signaling pathway abolishes estrogen-promoted beige adipogenesis.

12.
J Colloid Interface Sci ; 652(Pt B): 1271-1281, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659300

RESUMEN

Solar interfacial evaporation is a highly promising technology for seawater desalination and wastewater treatment, while the simple preparation processes and efficient production of clean water based on biomass interfacial evaporators still need further exploration and development. Here, we reported a wood-based evaporator (PFDW) loaded with Fe3O4 and polydopamine (PDA) after simple immersion treatment at room temperature for efficient and continuous water purification. The synergistic photothermal effect of PDA coating and Fe3O4 particles enables the evaporator to achieve high photothermal conversion efficiency in the longer wavelength range, while combined with the rapid water transport capacity endowed by the vertically aligned microporous structure of natural wood, it achieved an evaporation rate of 1.70 kg m-2h-1 and an energy efficiency of 98.0% under 1 kW m-2 irradiation. In addition, the prepared PFDW exhibited sustainable desalination stability and excellent removal efficiency for different water sources including organic dye wastewater, heavy metal effluent, oil-water emulsion and river water. This work provides a new avenue for efficient salt-tolerant portable evaporators.

13.
Front Psychiatry ; 14: 1238973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37654990

RESUMEN

This systematic review aims to offer an updated understanding of the relationship between omega-3 supplementation and/or vitamin D and autism spectrum disorders (ASD). The databases PubMed, Cochrane Library, Web of Science, EMBASE, CINAHL, Vip, CNKI, Wanfang, China Biomedical Database databases were searched using keywords, and relevant literature was hand-searched. Papers (n = 1,151) were systematically screened and deemed eligible since 2002. Twenty clinical controlled studies were included in the final review. The findings were analyzed for intervention effects focusing on the core symptoms of ASD, included social functioning, behavioral functioning, speech function and biomarkers changes. The review found that the effects of omega-3 supplementation on ASD were too weak to conclude that core symptoms were alleviated. Vitamin D supplementation improved core symptoms, particularly behavioral functioning, however, the results of the literatures included in this study were slightly mixed, we cannot directly conclude that vitamin D supplementation has a beneficial effect on a specific symptom of ASD, but the overall conclusion is that vitamin D supplementation has a positive effect on behavioral functioning in ASD. Omega-3 and vitamin D combination supplementation has a good combined effect on social and behavioral outcomes in patients with ASD.

14.
Mol Biotechnol ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37642828

RESUMEN

Tamoxifen (TAM) is commonly administered to a variety of inducible or conditional transgenic mice that contain Cre recombinase fused with ER. While the impacts of adult TAM treatment are well documented in the field of adipose biology, the long-term effects of postnatal TAM treatment on adult life are still understudied. In this study, we investigated whether postnatal TAM treatment had long-lasting effects on adult body composition and adiposity in male and female mice, fed either with chow or a high-fat diet (HFD). We found that postnatal, but not adult, TAM treatment had long-lasting impacts on female mice, resulting in lower body weight, lower fat mass, and smaller adipocytes. In contrast, postnatal exposure to TAM impaired male but not female cold-induced adipose beiging capacity. Interestingly, upon HFD feeding, the sex-dependent effects of TAM on adult life disappeared, and both female and male mice showed a more obese phenotype with impaired glucose tolerance. These findings suggest that postnatal TAM injection exerts a long-lasting impact on adipose tissue in adult life in a sex- and diet-dependent manner.

15.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37293108

RESUMEN

De novo brown adipogenesis holds potential in combating the epidemics of obesity and diabetes. However, the identity of brown adipocyte progenitor cells (APCs) and their regulation have not been extensively studied. Here through in vivo lineage tracing, we observed that PDGFRß+ pericytes give rise to developmental brown adipocytes, but not to those in adult homeostasis. In contrast, TBX18+ pericytes contribute to brown adipogenesis throughout both developmental and adult stages, though in a depot-specific manner. Mechanistically, Notch inhibition in PDGFRß+ pericytes promotes brown adipogenesis through the downregulation of PDGFRß. Furthermore, inhibition of Notch signaling in PDGFRß+ pericytes mitigates HFHS (high-fat, high-sucrose) induced glucose and metabolic impairment in both developmental and adult stages. Collectively, these findings show that the Notch/PDGFRß axis negatively regulates developmental brown adipogenesis, and its repression promotes brown adipose tissue expansion and improves metabolic health. Highlights: PDGFRß+ pericytes act as an essential developmental brown APC.TBX18+ pericytes contribute to brown adipogenesis in a depot-specific manner.Inhibiting Notch-Pdgfrß axis promotes brown APC adipogenesis.Enhanced postnatal brown adipogenesis improves metabolic health in adult stage.

16.
Nat Commun ; 14(1): 2731, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37169793

RESUMEN

A potential therapeutic target to curb obesity and diabetes is thermogenic beige adipocytes. However, beige adipocytes quickly transition into white adipocytes upon removing stimuli. Here, we define the critical role of cyclin dependent kinase inhibitor 2A (Cdkn2a) as a molecular pedal for the beige-to-white transition. Beige adipocytes lacking Cdkn2a exhibit prolonged lifespan, and male mice confer long-term metabolic protection from diet-induced obesity, along with enhanced energy expenditure and improved glucose tolerance. Mechanistically, Cdkn2a promotes the expression and activity of beclin 1 (BECN1) by directly binding to its mRNA and its negative regulator BCL2 like 1 (BCL2L1), activating autophagy and accelerating the beige-to-white transition. Reactivating autophagy by pharmacological or genetic methods abolishes beige adipocyte maintenance induced by Cdkn2a ablation. Furthermore, hyperactive BECN1 alone accelerates the beige-to-white transition in mice and human. Notably, both Cdkn2a and Becn1 exhibit striking positive correlations with adiposity. Hence, blocking Cdkn2a-mediated BECN1 activity holds therapeutic potential to sustain beige adipocytes in treating obesity and related metabolic diseases.


Asunto(s)
Adipocitos Beige , Tejido Adiposo Beige , Obesidad , Animales , Humanos , Masculino , Ratones , Adipocitos Beige/metabolismo , Adipocitos Blancos/metabolismo , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Adiposidad/genética , Adiposidad/fisiología , Obesidad/genética , Obesidad/metabolismo , Termogénesis
17.
Mol Cell Endocrinol ; 573: 111968, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37244600

RESUMEN

The development of white adipose tissue (WAT) occurs during distinct embryonic and postnatal stages, and it is subsequently maintained throughout life. However, the specific mediators and mechanisms responsible for WAT development during different phases remain unclear. In this study, we investigate the role of the insulin receptor (IR) in regulating adipogenesis and adipocyte function within adipocyte progenitor cells (APCs) during WAT development and homeostasis. We use two in vivo adipose lineage tracking and deletion systems to delete IR either in embryonic APCs or adult APCs, respectively, to explore the specific requirements of IR during WAT development and WAT homeostasis in mice. Our data suggest that IR expression in APCs may not be essential for adult adipocyte differentiation but appears to be crucial for adipose tissue development. We reveal a surprising divergent role of IR in APCs during WAT development and homeostasis.


Asunto(s)
Adipocitos , Receptor de Insulina , Ratones , Animales , Receptor de Insulina/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Obesidad/metabolismo , Adipogénesis , Células Madre
18.
Nat Commun ; 14(1): 1806, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002214

RESUMEN

Perivascular adipocyte progenitor cells (APCs) can generate cold temperature-induced thermogenic beige adipocytes within white adipose tissue (WAT), an effect that could counteract excess fat mass and metabolic pathologies. Yet, the ability to generate beige adipocytes declines with age, creating a key challenge for their therapeutic potential. Here we show that ageing beige APCs overexpress platelet derived growth factor receptor beta (Pdgfrß) to prevent beige adipogenesis. We show that genetically deleting Pdgfrß, in adult male mice, restores beige adipocyte generation whereas activating Pdgfrß in juvenile mice blocks beige fat formation. Mechanistically, we find that Stat1 phosphorylation mediates Pdgfrß beige APC signaling to suppress IL-33 induction, which dampens immunological genes such as IL-13 and IL-5. Moreover, pharmacologically targeting Pdgfrß signaling restores beige adipocyte development by rejuvenating the immunological niche. Thus, targeting Pdgfrß signaling could be a strategy to restore WAT immune cell function to stimulate beige fat in adult mammals.


Asunto(s)
Adipocitos , Adipogénesis , Masculino , Ratones , Animales , Adipogénesis/genética , Adipocitos/metabolismo , Transducción de Señal , Tejido Adiposo Blanco/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Termogénesis/genética , Mamíferos/metabolismo
19.
Mol Immunol ; 156: 85-97, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36913767

RESUMEN

The pathogenic hyper-inflammatory response has been regarded as the major cause of the severity and death related to acute lung injury (ALI). Hua-ban decoction (HBD) is a classical prescription in traditional Chinese medicine (TCM). It has been extensively used to treat inflammatory diseases; however, its bioactive components and therapeutic mechanisms remain unclear. Here, we established a lipopolysaccharide (LPS)-induced ALI model that presents a hyperinflammatory process to explore the pharmaco-dynamic effect and underlying molecular mechanism of HBD on ALI. In vivo, we confirmed that in LPS-induced ALI mice, HBD improved pulmonary injury by via down-regulating the expression of proinflammatory cytokines, including IL-6, TNF-α, and macrophage infiltration, as well as macrophage M1 polarization. Moreover, in vitro experiments in LPS-stimulated macrophages demonstrated that the potential bioactive compounds of HBD inhibited the secretion of IL-6 and TNF-α. Mechanically, the data revealed that HBD treatment of LPS-induced ALI acted via NF-κB pathway, which regulated macrophage M1 polarization. Additionally, two major HBD compounds, i.e., quercetin and kaempferol, showed a high binding affinity with p65 and IkBα. In conclusion, the data obtained in this study demonstrated the therapeutic effects of HBD, which indicates the possibility for the development of HBD as a potential treatment for ALI.


Asunto(s)
Lesión Pulmonar Aguda , Factor de Necrosis Tumoral alfa , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6 , Lipopolisacáridos/efectos adversos , Farmacología en Red , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , FN-kappa B/metabolismo , Pulmón/metabolismo
20.
Front Res Metr Anal ; 8: 943228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844756

RESUMEN

Background: This study outlines a comprehensive analysis of the primary characteristics of managing research integrity (RI) in domestic colleges and universities in China. RI education in China consists primarily of soft advocacy, with no hard requirements or continuous and systematic support. Together with other stakeholders, such as funders and publishers, higher education institutions (e.g., colleges and universities) are one of the vital actors that have a lot of influence on RI promotion and implementation among researchers. However, the literature on the regulation of RI policies in China's universities is limited. Methods: We investigate the top 50 colleges and universities in the 2021 Best Chinese Universities Ranking. Their guidance and policy documents on RI were collected via their official websites. By integrating the use of scientometrics analysis, including descriptive statistical analysis, inductive content analysis, and quantitative analysis, we examine whether and how these higher education institutions respond to national policies in a timely manner, especially in terms of their frequency of updates, topic clustering analysis, terms clustering analysis, content aggregation. To further understand the composition mechanism and the main working systems of university RI management organizations, we conducted in-depth research on the organizational functions, meeting system, staff composition mechanism, and scientific research misconduct acceptance and investigation mechanisms. Results: The regulations on the treatment of RI in China's universities have, in response to the government's call to establish their own management policies and working mechanisms, maintained a zero-tolerance stance on research misconduct. The sampled universities listed the definition and principles of misconduct practices, investigation procedures, and sanctions of research misconduct in their own policy documents. Some of them listed inappropriate research practices All 50 sampled universities have formed relevant organizations responsible for RI management, they all provide the detailed regulations of the committees. Yet, there is still a need to further define Questionable Research Practice, foster higher standards for integrity in research and, establish and improve an efficient, authoritative, well-restrained and supervision working mechanism for organizations responsible for RI treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...