Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
J Environ Sci (China) ; 147: 607-616, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003075

RESUMEN

This study embarks on an explorative investigation into the effects of typical concentrations and varying particle sizes of fine grits (FG, the involatile portion of suspended solids) and fine debris (FD, the volatile yet unbiodegradable fraction of suspended solids) within the influent on the mixed liquor volatile suspended solids (MLVSS)/mixed liquor suspended solids (MLSS) ratio of an activated sludge system. Through meticulous experimentation, it was discerned that the addition of FG or FD, the particle size of FG, and the concentration of FD bore no substantial impact on the pollutant removal efficiency (denoted by the removal rate of COD and ammonia nitrogen) under constant operational conditions. However, a notable decrease in the MLVSS/MLSS ratio was observed with a typical FG concentration of 20 mg/L, with smaller FG particle sizes exacerbating this reduction. Additionally, variations in FD concentrations influenced both MLSS and MLVSS/MLSS ratios; a higher FD concentration led to an increased MLSS and a reduced MLVSS/MLSS ratio, indicating FD accumulation in the system. A predictive model for MLVSS/MLSS was constructed based on quality balance calculations, offering a tool for foreseeing the MLVSS/MLSS ratio under stable long-term influent conditions of FG and FD. This model, validated using data from the BXH wastewater treatment plant (WWTP), showcased remarkable accuracy.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Tamaño de la Partícula , Contaminantes Químicos del Agua/análisis
2.
Angew Chem Int Ed Engl ; : e202407810, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957933

RESUMEN

Hydrogen spillover in metal-supported catalysts can largely enhance electrocatalytic hydrogenation performance and reduce energy consumption. However, its fundamental mechanism, especially at the metal-metal interface, remains further explored, impeding relevant catalyst design. Here, we theoretically profile that a large free energy difference in hydrogen adsorption on two different metals (|ΔGH-metal(i) - ΔGH-metal(ii)|) induces a high kinetic barrier to hydrogen spillover between the metals. Minimizing the difference in their d-band centers (Δεd) should reduce |ΔGH-metal(i) - ΔGH-metal(ii)|, lowering the kinetic barrier to hydrogen spillover for improved electrocatalytic hydrogenation. We demonstrated this concept using copper-supported ruthenium-platinum alloys with the smallest Δεd, which delivered record high electrocatalytic nitrate hydrogenation performance, with ammonia production rate of 3.45±0.12 mmol h-1 cm-2 and Faraday efficiency of 99.8±0.2 %, at low energy consumption of 21.4 kWh kgamm-1. Using these catalysts, we further achieve continuous ammonia and formic acid production with a record high-profit space.

3.
Reprod Biol Endocrinol ; 22(1): 80, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997724

RESUMEN

BACKGROUND: In recent years, with benefits from the continuous improvement of clinical technology and the advantage of fertility preservation, the application of embryo cryopreservation has been growing rapidly worldwide. However, amidst this growth, concerns about its safety persist. Numerous studies have highlighted the elevated risk of perinatal complications linked to frozen embryo transfer (FET), such as large for gestational age (LGA) and hypertensive disorders during pregnancy. Thus, it is imperative to explore the potential risk of embryo cryopreservation and its related mechanisms. METHODS: Given the strict ethical constraints on clinical samples, we employed mouse models in this study. Three experimental groups were established: the naturally conceived (NC) group, the fresh embryo transfer (Fresh-ET) group, and the FET group. Blastocyst formation rates and implantation rates were calculated post-embryo cryopreservation. The impact of FET on fetal growth was evaluated upon fetal and placental weight. Placental RNA-seq was conducted, encompassing comprehensive analyses of various comparisons (Fresh-ET vs. NC, FET vs. NC, and FET vs. Fresh-ET). RESULTS: Reduced rates of blastocyst formation and implantation were observed post-embryo cryopreservation. Fresh-ET resulted in a significant decrease in fetal weight compared to NC group, whereas FET reversed this decline. RNA-seq analysis indicated that the majority of the expression changes in FET were inherited from Fresh-ET, and alterations solely attributed to embryo cryopreservation were moderate. Unexpectedly, certain genes that showed alterations in Fresh-ET tended to be restored in FET. Further analysis suggested that this regression may underlie the improvement of fetal growth restriction in FET. The expression of imprinted genes was disrupted in both FET and Fresh-ET groups. CONCLUSION: Based on our experimental data on mouse models, the impact of embryo cryopreservation is less pronounced than other in vitro manipulations in Fresh-ET. However, the impairment of the embryonic developmental potential and the gene alterations in placenta still suggested it to be a risky operation.


Asunto(s)
Criopreservación , Transferencia de Embrión , Placenta , Criopreservación/métodos , Femenino , Embarazo , Animales , Ratones , Transferencia de Embrión/métodos , Placenta/metabolismo , Embrión de Mamíferos , Implantación del Embrión/genética , Desarrollo Fetal/genética , Blastocisto/metabolismo
4.
Invest Ophthalmol Vis Sci ; 65(8): 19, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38984874

RESUMEN

Purpose: The purpose of this study was to utilize multi-parametric magnetic resonance imaging (MRI) to investigate in vivo age-related changes in the physiology and optics of mouse lenses where Connexin 50 has been deleted (Cx50KO) or replaced by Connexin 46 (Cx50KI46). Methods: The lenses of transgenic Cx50KO and Cx50KI46 mice were imaged between 3 weeks and 6 months of age using a 7T MRI. Measurements of lens geometry, the T2 (water-bound protein ratios), the refractive index (n), and T1 (free water content) values were calculated by processing the acquired images. The lens power was calculated from an optical model that combined the geometry and the n. All transgenic mice were compared with control mice at the same age. Results: Cx50KO and Cx50KI46 mice developed smaller lenses compared with control mice. The lens thickness, volume, and surface radii of curvatures all increased with age but were limited to the size of the lenses. Cx50KO lenses exhibited higher lens power than Cx50KI46 lenses at all ages, and this was correlated with significantly lower water content in these lenses, which was probably modulated by the gap junction coupling. The refractive power tended to a steady state with age, similar to the control mice. Conclusions: The modification of Cx50 gap junctions significantly impacted lens growth and physiological optics as the mouse aged. The lenses showed delayed development growth, and altered optics governed by different lens physiology. This research provides new insights into how gap junctions regulate the development of the lens's physiological optics.


Asunto(s)
Conexinas , Cristalino , Ratones Transgénicos , Animales , Cristalino/metabolismo , Conexinas/metabolismo , Conexinas/genética , Ratones , Imagen por Resonancia Magnética , Envejecimiento/fisiología , Refracción Ocular/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Uniones Comunicantes/fisiología , Uniones Comunicantes/metabolismo
5.
Sci Total Environ ; 947: 174600, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986708

RESUMEN

Membrane fouling is a persistent challenge that has impeded the broader application of anaerobic membrane bioreactors (AnMBRs). To mitigate membrane fouling, between the outlet of the UASB anaerobic bioreactor and the PVDF membrane to form the anaerobic filter membrane bioreactor (AnFMBR) system. Through comprehensive experiments, the optimal pore size for cloth filters was determined to be 50 µm. A comprehensive assessment over 140 days of operation shows that the novel AnFMBR had significantly greater resistance to membrane pollution than the traditional AnMBR. The AnFMBR system membrane tank exhibited lower mixed liquor suspended solid and mixed liquor volatile suspended solid concentrations, smaller sludge particle sizes, increased hydrophilicity of sludge flocs, and optimized microbial community distribution compared to those of conventional AnMBRs. The total solids foulant accumulation rate in the AnMBR was 5.1 g/m2/day, while in the AnFMBR, the rate was 2.4 g/m2/day, marking a 53.7 % decrease in fouling rate for the AnFMBR compared with the AnMBR. This decrease indicates that integrating the filtration assembly significantly lowered the rate of solid foulant accumulation on the membrane surface, primarily by controlling the buildup of solid foulants in the cake layer, thereby alleviating membrane fouling. AnFMBR compared to AnMBR, the membrane fouling rate halved, effectively doubled the interval between membrane cleaning from seven days, as observed in the AnMBR system, to fourteen days. These findings underscore the potential of integrating cloth media filters into AnMBRs to improve operational efficiency, economic viability, and sustainability.

6.
Chemosphere ; 363: 142836, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004146

RESUMEN

The main challenge in removing nutrients from municipal wastewater in China is the lack of available carbon sources. While hydrolysis acidification tanks can improve wastewater biodegradability by effectively utilizing internal carbon sources, high sludge concentrations are difficult to control in traditional tank variants. In this study, an innovative anaerobic filter (AnF) hydrolysis acidification reactor composed of a continuously stirred tank reactor (CSTR) and cloth media filter was designed to regulate and maintain high sludge concentrations in the hydrolysis acidifier. The reactor was used as a pretreatment unit for the anaerobic/anoxic/oxic (AAO) units and combined into an AnF-AAO system to explore the effectiveness of internal carbon source utilization in wastewater. The results indicate that as the sludge concentration in the hydrolysis acidifier increased, the hydrolysis and acidification processes became more efficient. The optimal sludge concentration was 40 g/L, which significantly increased the production of soluble chemical oxygen demand and volatile fatty acids. Above this concentration, the efficiency decreased. Compared to traditional AAO processes, the AnF-AAO system achieved superior total nitrogen and phosphorus removal with shorter hydraulic retention times and reduced sludge production by a significant amount of 35%. Due to its capacity for enhancing internal carbon source utilization, the AnF-AAO system constitutes a promising approach for sustainable urban wastewater treatment.

7.
Front Ophthalmol (Lausanne) ; 4: 1385495, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984144

RESUMEN

Purpose: Blood flow (BF) of the retinal and choroidal vasculatures can be quantitatively imaged using MRI. This study sought to improve methods of data acquisition and analysis for MRI of layer-specific retinal and choroidal BF and then applied this approach to detect reduced ocular BF in a well-established mouse model of glaucoma from both eyes. Methods: Quantitative BF magnetic resonance imaging (MRI) was performed on glaucomatous DBA/2J and normal C57BL/6J mice. Arterial spin labeling MRI was applied to image retinal and choroidal BF using custom-made dual eye coils that could image both eyes during the same scan. Statistics using data from a single eye or two eyes were compared. BF values were calculated using two approaches. The BF rate per quantity of tissue was calculated as commonly done, and the peak BF values of the retinal and choroidal vasculatures were taken. Additionally, the BF rate per retinal surface area was calculated using a new analysis approach to attempt to reduce partial volume and variability by integrating BF over the retinal and choroidal depths. Results: Ocular BF of both eyes could be imaged using the dual coil setup without effecting scan time. Intraocular pressure was significantly elevated in DBA/2J mice compared to C57BL/6J mice (P<0.01). Both retinal and choroidal BF were significantly decreased in DBA/2J mice in comparison to the age-matched normal C57BL/6J mice across all measurements (P < 0.01). From simulations, the values from the integrated BF analysis method had less partial volume effect, and from in vivo scans, this analysis approach also improved power. Conclusion: The dual eye coil setup allows bilateral eye data acquisition, increasing the amount of data acquired without increasing acquisition times in vivo. The reduced ocular BF found using the improved acquisition and analysis approaches replicated the results of previous studies on DBA/2J mice. The ocular hypertensive stress-induced BF reduction found within these mice may represent changes associated with glaucomatous progression.

8.
J Environ Manage ; 365: 121530, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38905799

RESUMEN

Atrazine is a widely used herbicide in agriculture, and it has garnered significant attention because of its potential risks to the environment and human health. The extensive utilization of atrazine, alongside its persistence in water and soil, underscores the critical need to develop safe and efficient removal strategies. This comprehensive review aims to spotlight atrazine's potential impact on ecosystems and public health, particularly its enduring presence in soil, water, and plants. As a known toxic endocrine disruptor, atrazine poses environmental and health risks. The review navigates through innovative removal techniques across soil and water environments, elucidating microbial degradation, phytoremediation, and advanced methodologies such as electrokinetic-assisted phytoremediation (EKPR) and photocatalysis. The review notably emphasizes the complex process of atrazine degradation and ongoing scientific efforts to address this, recognizing its potential risks to both the environment and human health.


Asunto(s)
Atrazina , Biodegradación Ambiental , Herbicidas , Atrazina/toxicidad , Humanos , Ecosistema , Suelo/química , Contaminantes del Suelo
9.
J Hazard Mater ; 476: 134868, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38897119

RESUMEN

Both selenium (Se) and gibberellins (GA3) can alleviate cadmium (Cd) toxicity in plants. However, the application of Se and GA3 as foliar spray to against Cd stress on soybean and its related mechanisms have been poorly explored. Herein, this experiment evaluated the effects of Se and GA3 alone and combined application on soybean rhizosphere microenvironment, Cd accumulation and growth of soybean seedlings. The results revealed that both Se and GA3 can effectively decrease the accumulation of Cd in soybean seedlings. Foliar application of Se, GA3 and their combination reduced Cd contents in soybean seedlings respectively by 21.70 %, 27.53 % and 45.07 % when compared with the control treatment, suggest a synergistic effect of Se and GA3 in decreasing Cd accumulation. Se and GA3 also significantly increased diversity and abundance of the metabolites in rhizosphere, which consequently played an important role in shaping rhizosphere bacteria community and improve rhizosphere soil physicochemical properties of Cd contaminated soil, as well as decreased the Cd available forms contents but enhance the immobilized form levels. Overall, this study affords a novel approach on mitigating Cd accumulation in soybean seedlings which is attributed to Se and GA3 regulated interplay among rhizosphere soil metabolites, bacteria community and cadmium speciation.

10.
Opt Express ; 32(9): 15269-15279, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859182

RESUMEN

Telescopes play an essential important role in the fields of astronomical observation, emergency rescue, etc. The traditional telescopes achieve zoom function through the mechanical movement of the solid lenses, usually requiring refocusing after magnification adjustment. Therefore, the traditional telescopes lack adaptability, port-ability and real-time capability. In this paper, a continuous optical zoom telescopic system based on liquid lenses is proposed. The main components of the system consist of an objective lens, an eyepiece, and a zoom group composed of six pieces of liquid lenses. By adjusting the external voltages on the liquid lenses, the zoom telescopic system can achieve continuous optical zoom from ∼1.0× to ∼4.0× operating with an angular resolution from 28.648" to 19.098", and the magnification switching time is ∼50ms. The optical structure of the zoom telescopic system with excellent performance is given, and its feasibility is demonstrated by simulations and experiments. The proposed system with fast response, portability and high adaptability is expected to be applied to astronomical observation, emergency rescue and so on.

11.
PLoS One ; 19(4): e0300538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558076

RESUMEN

PURPOSE: The cryopreservation process damages oocytes and impairs development potential. As a potent antioxidant, C-phycocyanin (PC) regulates reproductive performance. However, its beneficial effects on vitrified human oocytes remain unknown. METHODS: In this study, human GV-stage oocytes obtained from controlled ovarian hyperstimulation (COH) cycles were randomly allocated to three groups: fresh oocyte without freezing (F group), vitrification in medium supplemented with PC (P group), and vitrification in medium without PC as control group (C group). After warming, viable oocytes underwent in vitro maturation. RESULTS: Our results showed that 3 µg/mL PC treatment increased the oocyte maturation rate after cryopreservation. We also found that PC treatment maintains the regular morphological features of oocytes. After PC treatment, confocal fluorescence staining showed a significant increase in the mitochondrial membrane potential of the vitrified oocytes, along with a notable decrease in intracellular reactive oxygen species and the early apoptosis rate. Finally, after in vitro maturation and parthenogenetic activation, vitrified oocytes had a higher potential for cleavage and blastocyst formation after PC treatment. CONCLUSION: Our results suggest that PC improves the developmental potential of cryopreserved human GV-stage oocytes by attenuating oxidative stress and early apoptosis and increasing the mitochondrial membrane potential.


Asunto(s)
Criopreservación , Ficocianina , Humanos , Especies Reactivas de Oxígeno/metabolismo , Ficocianina/farmacología , Criopreservación/métodos , Oocitos , Vitrificación
12.
Theriogenology ; 222: 66-79, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626583

RESUMEN

In vitro maturation (IVM) and cryopreservation of goat oocytes are important for establishing a valuable genetic bank for domesticated female animals and improving livestock reproductive efficiency. C-Phycocyanin (PC) is a Spirulina extract with antioxidant, antiinflammatory, and radical scavenging properties. However, whether PC has positive effect on goat oocytes IVM or developmental competence after vitrification is still unknown. In this study, we found that first polar body extrusion (n = 293), cumulus expansion index (n = 269), and parthenogenetic blastocyst formation (n = 281) were facilitated by adding 30 µg/mL PC to the oocyte maturation medium when compared with the control groups and that supplemented with 3, 10, 100 or 300 µg/mL PC (P < 0.05). Although PC supplementation did not affect spindle formation or chromosome alignment (n = 115), it facilitated or improved cortical granules migration (n = 46, P < 0.05), mitochondria distribution (n = 39, P < 0.05), and mitochondrial membrane potential (n = 46, P < 10-4). Meanwhile, supplementation with 30 µg/mL PC in the maturation medium could significantly inhibit the reactive oxygen species accumulation (n = 65, P < 10-4), and cell apoptosis (n = 42, P < 0.05). In addition, PC increased the oocyte mRNA levels of GPX4 (P < 0.01), and decreased the mRNA and protein levels of BAX (P < 0.01). Next, we investigated the effect of PC supplementation in the vitrification solution on oocyte cryopreservation. When compared with the those equilibrate in the vitrification solution without PC, recovered oocytes in the 30 µg/mL PC group showed higher ratios of normal morphology (n = 85, P < 0.05), survival (n = 85, P < 0.05), first polar body extrusion (n = 62, P < 0.05), and parthenogenetic blastocyst formation (n = 107, P < 0.05). Meanwhile, PC supplementation of the vitrification solution increased oocyte mitochondrial membrane potential (n = 53, P < 0.05), decreased the reactive oxygen species accumulation (n = 73, P < 0.05), promoted mitochondria distribution (n = 58, P < 0.05), and inhibited apoptosis (n = 46, P < 10-3). Collectively, our findings suggest that PC improves goat oocyte IVM and vitrification by reducing oxidative stress and early apoptosis, which providing a novel strategy for livestock gamete preservation and utilization.


Asunto(s)
Criopreservación , Cabras , Técnicas de Maduración In Vitro de los Oocitos , Oocitos , Ficocianina , Vitrificación , Animales , Oocitos/efectos de los fármacos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , Vitrificación/efectos de los fármacos , Criopreservación/veterinaria , Criopreservación/métodos , Ficocianina/farmacología , Femenino , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos
13.
Environ Sci Pollut Res Int ; 31(13): 19961-19973, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38368299

RESUMEN

Mixed carbon sources have been developed for denitrification to eliminate the "carbon dependency" problem of single carbon. The metabolic correlation between different carbon sources is significant as guidance for the development of novel mixed carbon sources. In this study, to explore the metabolic similarity of denitrifying carbon sources, we selected alcohols (methanol, ethanol, and glycerol) and saccharide carbon sources (glucose, sucrose, and starch). Batch denitrification experiments revealed that methanol-acclimated sludge improved the denitrification rate of both methanol (14.42 mg-N/gMLVSS*h) and ethanol (9.65 mg-N/gMLVSS*h), whereas ethanol-acclimated sludge improved the denitrification rate of both methanol (7.80 mg-N/gMLVSS*h) and ethanol (22.23 mg-N/gMLVSS*h). In addition, the glucose-acclimated sludge and sucrose-acclimated sludge possibly improved the denitrification rate of glucose and sucrose, and the glycerol-acclimated sludge improved the denitrification rate of volatile fatty acids (VFAs), alcohols, and saccharide carbon sources. Functional gene analysis revealed that methanol, ethanol, and glycerol exhibited active alcohol oxidation and glyoxylate metabolism, and glycerol, glucose, and sucrose exhibited active glycolysis metabolism. This indicated that the similarity in the denitrification metabolism of these carbon sources was based on functional gene similarity, and glycerol-acclimated sludge exhibited the most diverse metabolism, which ensured its good denitrification effect with other carbon sources.


Asunto(s)
Carbono , Metanol , Carbono/metabolismo , Aguas del Alcantarillado , Glicerol , Reactores Biológicos , Etanol/metabolismo , Glucosa , Sacarosa , Desnitrificación , Nitrógeno
14.
Angew Chem Int Ed Engl ; 63(15): e202400483, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38321496

RESUMEN

Electrocatalytic alkyne semihydrogenation under mild conditions is a more attractive approach for alkene production than industrial routes but suffers from either low production efficiency or high energy consumption. Here, we describe a tandem catalytic concept that overcomes these challenges. Component (i), which can trap hydrogen effectively, is partnered with component (ii), which can readily release hydrogen for hydrogenation, to enable efficient generation of active hydrogen on component (i) at low overpotentials and timely (i)-to-(ii) hydrogen spillover and facile desorptive hydrogenation on component (ii). We examine this concept over bicomponent palladium-copper catalysts for the production of representative 2-methyl-3-butene-2-ol (MBE) from 2-methyl-3-butyne-2-ol (MBY) and achieve a record high MBE production rate of 1.44 mmol h-1 cm-2 and a Faraday efficiency of ~88.8 % at a low energy consumption of 1.26 kWh kgMBE -1. With these catalysts, we further achieve 60 h continuous production of MBE with record high profit space.

15.
Micromachines (Basel) ; 15(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38258254

RESUMEN

Highly sensitive surface acoustic wave (SAW) sensors have recently been recognized as a promising tool for various industrial and medical applications. However, existing SAW sensors generally suffer from a complex design, large size, and poor robustness. In this paper, we develop a simple and stable delay line ultra-high frequency (UHF) SAW sensor for highly sensitive detection of temperature. A Z-shaped delay line is specially designed on the piezoelectric substrate to improve the sensitivity and reduce the substrate size. Herein, the optimum design parameters of extremely short-pitch interdigital transducers (IDTs) are given by numerical simulations. The extremely short pitch gives the SAW sensor ultra-high operating frequency and consequently ultra-high sensitivity. Several experiments are conducted to demonstrate that the sensitivity of the Z-shaped SAW delay line sensor can reach up to 116.685°/°C for temperature detection. The results show that the sensor is an attractive alternative to current SAW sensing platforms in many applications.

16.
Small ; 20(3): e2304990, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37705122

RESUMEN

The splitting of the C-C bonds of ethanol remains a key issue to be addressed, despite tremendous efforts made over the past several decades. This study highlights the enhancement mechanism of inexpensive NbN-modified Pd1 Sn3 -NbN/C towards the C-C bonds cleavage for alkaline ethanol oxidation reaction (EOR). The optimal Pd1 Sn3 -NbN/C delivers a catalytic activity up to 43.5 times higher than that of commercial Pd/C and high carbonate selectivity (20.5%) toward alkaline EOR. Most impressively, the Pd1 Sn3 -NbN/C presents good durability even after 25 200 s of chronoamperometric testing. The enhanced catalytic performance is mainly due to the interfacial interaction between PdSn and NbN, demonstrated by multiple structural characterization results. In addition, in situ ATR-SEIRAS (Attenuated total reflection-surface enhanced infrared absorption spectroscopy) results suggest that NbN facilitates the C-C bonds cleavage towards the alkaline EOR, followed by the enhanced OH adsorption to promote the subsequent oxidation of C1 intermediates after doping Sn. DFT (density functional theory) calculations indicate that the activation barriers of the C-H bond cleavage in CH3 CH2 OH, CH3 CHOH, CH3 CHO, CH3 CO, CH2 CO, and the C-C bond cleavage in CH3 CO, CH2 CO, CHCO are evidently reduced and the removal of adsorbed CH3 CO and CO becomes easier on the PdSn-NbN/C catalyst surface.

17.
Environ Sci Technol ; 58(1): 826-835, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38154031

RESUMEN

In the development of nanoenabled technologies for large-scale water treatment, immobilizing nanosized functional materials into the confined space of suitable substrates is one of the most effective strategies. However, the intrinsic effects of nanoconfinement on the decontamination performance of nanomaterials, particularly in terms of structural modulation, are rarely unveiled. Herein, we investigate the structure evolution and decontamination performance of iron (hydr)oxide nanoparticles, a widely used material for water treatment, when confined in track-etched (TE) membranes with channel sizes varying from 200 to 20 nm. Nanoconfinement drives phase transformation from ferrihydrite to goethite, rather than to hematite occurring in bulk systems, and the increase in the nanoconfinement degree from 200 to 20 nm leads to a significant drop in the fraction of the goethite phase within the aged products (from 41% to 0%). The nanoconfinement configuration is believed to greatly slow down the phase transformation kinetics, thereby preserving the specific adsorption of ferrihydrite toward As(V) even after 20-day aging at 343 K. This study unravels the structure evolution of confined iron hydroxide nanoparticles and provides new insights into the temporospatial effects of nanoconfinement on improving the water decontamination performance.


Asunto(s)
Hierro , Purificación del Agua , Hierro/química , Óxidos , Compuestos Férricos/química , Minerales/química , Adsorción
18.
J Hazard Mater ; 465: 133237, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38113741

RESUMEN

The abuse and residue of herbicides in the black soil area had seriously affected the soil structure, function and crop growth, posing severe threats to agricultural soil environment and public health. Given the limitation of routine microbial remediation, innovative and eco-friendly functional bacterial biofilm which could adapt under adverse conditions was developed on the biochar to investigate its enhanced bioremediation and metabolic characteristics of typical herbicide atrazine. Results revealed that the atrazine degrading strain Acinetobacter lwoffii had competitive advantage in soil indigenous microorganisms and formed dense biofilms on the biochar which was beneficial to cell viability maintenance and aggregations. Metatranscriptomics and RT-qPCR analysis demonstrated that the biochar-mediated biofilm improved the frequency of intercellular communications through quorum sensing and two-component signal regulation systems, and enhanced the atrazine biodegradation efficiency through horizontal gene transfer in co-metabolism mode, providing important scientific basis for the biological remediation of farmland soil non-point source pollution.


Asunto(s)
Atrazina , Carbón Orgánico , Herbicidas , Contaminantes del Suelo , Atrazina/química , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo , Herbicidas/metabolismo , Suelo/química , Bacterias/metabolismo , Biopelículas , Microbiología del Suelo
19.
Nat Commun ; 14(1): 8334, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097609

RESUMEN

Killer meiotic drivers (KMDs) skew allele transmission in their favor by killing meiotic progeny not inheriting the driver allele. Despite their widespread presence in eukaryotes, the molecular mechanisms behind their selfish behavior are poorly understood. In several fission yeast species, single-gene KMDs belonging to the wtf gene family exert selfish killing by expressing a toxin and an antidote through alternative transcription initiation. Here we investigate how the toxin and antidote products of a wtf-family KMD gene can act antagonistically. Both the toxin and the antidote are multi-transmembrane proteins, differing only in their N-terminal cytosolic tails. We find that the antidote employs PY motifs (Leu/Pro-Pro-X-Tyr) in its N-terminal cytosolic tail to bind Rsp5/NEDD4 family ubiquitin ligases, which ubiquitinate the antidote. Mutating PY motifs or attaching a deubiquitinating enzyme transforms the antidote into a toxic protein. Ubiquitination promotes the transport of the antidote from the trans-Golgi network to the endosome, thereby preventing it from causing toxicity. A physical interaction between the antidote and the toxin enables the ubiquitinated antidote to translocate the toxin to the endosome and neutralize its toxicity. We propose that post-translational modification-mediated protein localization and/or activity changes may be a common mechanism governing the antagonistic duality of single-gene KMDs.


Asunto(s)
Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Antídotos , Ubiquitinación , Aparato de Golgi/metabolismo , Ubiquitina/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
20.
PLoS Biol ; 21(11): e3002372, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37939137

RESUMEN

Selective macroautophagy of the endoplasmic reticulum (ER) and the nucleus, known as ER-phagy and nucleophagy, respectively, are processes whose mechanisms remain inadequately understood. Through an imaging-based screen, we find that in the fission yeast Schizosaccharomyces pombe, Yep1 (also known as Hva22 or Rop1), the ortholog of human REEP1-4, is essential for ER-phagy and nucleophagy but not for bulk autophagy. In the absence of Yep1, the initial phase of ER-phagy and nucleophagy proceeds normally, with the ER-phagy/nucleophagy receptor Epr1 coassembling with Atg8. However, ER-phagy/nucleophagy cargos fail to reach the vacuole. Instead, nucleus- and cortical-ER-derived membrane structures not enclosed within autophagosomes accumulate in the cytoplasm. Intriguingly, the outer membranes of nucleus-derived structures remain continuous with the nuclear envelope-ER network, suggesting a possible outer membrane fission defect during cargo separation from source compartments. We find that the ER-phagy role of Yep1 relies on its abilities to self-interact and shape membranes and requires its C-terminal amphipathic helices. Moreover, we show that human REEP1-4 and budding yeast Atg40 can functionally substitute for Yep1 in ER-phagy, and Atg40 is a divergent ortholog of Yep1 and REEP1-4. Our findings uncover an unexpected mechanism governing the autophagosomal enclosure of ER-phagy/nucleophagy cargos and shed new light on the functions and evolution of REEP family proteins.


Asunto(s)
Schizosaccharomyces , Humanos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Autofagia/genética , Retículo Endoplásmico/metabolismo , Autofagosomas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Estrés del Retículo Endoplásmico , Proteínas de Transporte de Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA