Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4317, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773086

RESUMEN

Transition-metal catalyzed allylic substitution reactions of alkenes are among the most efficient methods for synthesizing diene compounds, driven by the inherent preference for an inner-sphere mechanism. Here, we present a demonstration of an outer-sphere mechanism in Rh-catalyzed allylic substitution reaction of simple alkenes using gem-difluorinated cyclopropanes as allyl surrogates. This unconventional mechanism offers an opportunity for the fluorine recycling of gem-difluorinated cyclopropanes via C - F bond cleavage/reformation, ultimately delivering allylic carbofluorination products. The developed method tolerates a wide range of simple alkenes, providing access to secondary, tertiary fluorides and gem-difluorides with 100% atom economy. DFT calculations reveal that the C - C bond formation goes through an unusual outer-sphere nucleophilic substitution of the alkenes to the allyl-Rh species instead of migration insertion, and the generated carbon cation then forms the C - F bond with tetrafluoroborate as a fluoride shuttle.

2.
Chem Commun (Camb) ; 60(28): 3764-3773, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501197

RESUMEN

Small-ring chemistry is a fascinating field in organic chemistry. gem-Difluorinated cyclopropanes, a unique class of cyclopropanes, have garnered significant interest due to their intrinsic high reactivity. In this context, gem-difluorinated cyclopropanes have been extensively investigated as fluoroallylic synthons in Pd-catalyzed ring-opening/cross-coupling reactions for the synthesis of monofluoroalkenes with linear or branched selectivity. In contrast, Rh-catalysis has revealed diverse selectivity in the reaction of gem-difluorinated cyclopropanes, such as regioselectivity, enantioselectivity, and chemoselectivity. This feature article aims to summarize our efforts towards developing Rh-catalyzed reactions of gem-difluorinated cyclopropanes, briefly discussing the design, selectivity, reaction mechanisms and future research prospects.

3.
Angew Chem Int Ed Engl ; 63(22): e202403602, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38515395

RESUMEN

The use of gem-difluorinated cyclopropanes (gem-DFCPs) as fluoroallyl surrogates under transition-metal catalysis has drawn considerable attention recently but such reactions are restricted to producing achiral or racemic mono-fluoroalkenes. Herein, we report the first enantioselective allylation of indoles under rhodium catalysis with gem-DFCPs. This reaction shows exceptional branched regioselectivity towards rhodium catalysis with gem-DFCPs, which provides an efficient route to enantioenriched fluoroallylated indoles with wide substrate scope and good functional group tolerance.

4.
Angew Chem Int Ed Engl ; 63(11): e202319647, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38198183

RESUMEN

Here we present a modular, chemo-, regio-, and stereoselective synthesis of fully-substituted and configuration-defined alkyl vinyl ethers (AVEs) using simple chemical feedstocks. The distinctive approach involves the chemo- and regioselective functionalization of the CF2 unit in gem-difluorinated cyclopropanes with O-H and C-H nucleophiles in a specific order. The resulting highly functionalized cyclopropanyl ethers then undergo a stereoselective ring-opening process to produce fully-substituted and configuration-defined AVEs. These AVEs are rarely accessible through conventional methods and are easily transformable. Mechanistic experiments indicate that the success of this method relies on the use of dual-functional copper catalysis, which is involved in both the functionalization of the CF2 unit and the subsequent ring-opening process.

5.
RSC Adv ; 13(43): 30346-30357, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37849705

RESUMEN

Hexagonal boron nitride (h-BN) has been widely utilized in various strategic applications. Fine-tuning properties of BN towards the desired application often involves ad-atom adsorption of modifying its geometries through creating surface defects. This work utilizes accurate DFT computations to investigate adsorption of selected 1st and 2nd row elements (H, Li, C, O, Al, Si, P, S) of the periodic table on various structural geometries of BN. The underlying aim is to assess the change in key electronic properties upon the adsorption process. In addition to the pristine BN, B and N vacancies were comprehensively considered and a large array of properties (i.e., atomic charges, adsorption energies, density of states) were computed and contrasted among the eight elements. For instance, we found that the band gap to vary between 0.33 eV (in case of Li) and 4.14 eV (in case of P). Likewise, we have illustrated that magnetic contribution to differ substantially depending on the adatom adsorbents. Results from this work has also lays a theoretical foundation for the use of decorated and defected BN as a chemical sensor for CO gases.

6.
Materials (Basel) ; 16(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37895634

RESUMEN

This study presents novel life cycle assessment (LCA) findings on hydrochar production from Saudi-Arabia-based date palm fronds biomass waste using hydrothermal carbonization (HTC). The LCA procedure incorporated normalization, weighting, and improvement assessment. The system boundary encompassed water consumption and energy requirements within a lab setting representing a gate-to-gate process. The OpenLCA 1.11.0 software with the European Life Cycle Database 3.2 (ELCD 3.2) was utilized for the study and we employed the ReCiPe Midpoint (H) 2016 and Environmental Footprint 3.0 (EF 3.0) impact assessment methods. The results indicated that fossil fuel usage represented the most significant impact category with the HTC and drying processes identified as major contributors. It was also observed that the HTC process exerted far greater detrimental impacts on the environment than the biomass grinding process. The overwhelming impact of fossil fuel resources could be mitigated by optimizing the batches of biomass or hydrochar samples in each operation, which could alleviate fossil fuel consumption by up to 94%. The findings emphasize the need for targeted interventions to mitigate the environmental burden and contribute to sustainable hydrochar production.

7.
Materials (Basel) ; 16(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36837062

RESUMEN

For thermal energy storage, the most promising method that has been considered is latent heat storage associated with molten salt mixtures as phase-change material (PCM). The binary salt mixture lithium chloride-lithium hydroxide (LiCl-LiOH) with a specific composition can store thermal energy. However, to the best of our knowledge, there is no information on their thermal stability in previous literature. The key objectives of this article were to investigate the thermophysical properties, thermal repeatability, and thermal decomposition behavior of the chosen binary salt mixture. FactSage software was used to determine the composition of the binary salt mixture. Thermophysical properties were investigated with a simultaneous thermal analyzer (STA). The thermal results show that the binary salt 32 mol% LiCl-68 mol% LiOH melts within the range of 269 °C to 292 °C and its heat of fusion is 379 J/g. Thermal repeatability was tested with a thermogravimetric analyzer (TGA) for 30 heating and cooling cycles, which resulted in little change to the melting temperature and heat of fusion. Thermal decomposition analysis indicated negligible weight loss until 500 °C and showed good thermal stability. Chemical and structural instability was verified by X-ray diffraction (XRD) by analysing the binary salt system before and after thermal treatment. A minor peak corresponding to lithium oxide was observed in the sample decomposed at 700 °C which resulted from the decomposition of LiOH at high temperature. The morphology and elemental distribution examinations of the binary salt mixture were carried out via scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). X-ray photoelectron spectroscopy was conducted for surface analysis, and their elemental composition verified the chemical stability of the binary salt mixture. Overall, the results confirmed that the binary salt mixture is a potential candidate to be used as thermal energy storage material in energy storage applications of up to 500 °C.

8.
Org Lett ; 24(45): 8429-8434, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36331075

RESUMEN

gem-Difluorinated cyclopropanes have attracted wide research interest in organic synthesis due to their high reactivity. Herein, we report a Lewis acid-catalyzed cross-coupling reaction of mono- and disubstituted gem-difluorinated cyclopropanes with nucleophiles. The formation of a fluoroallyl cation species triggered via the Lewis acid-assisted activation of the C-F bond is proposed in this transformation. The cation species is then trapped by the nucleophiles, including electron-rich arenes and allylsilanes, to deliver a series of fluoroallylic products in good yields. The reaction provides an alternative mode for using gem-difluorinated cyclopropanes as fluoroallyl surrogates.

9.
Org Lett ; 24(33): 6176-6181, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35951978

RESUMEN

Herein, we report an effective method to offer chiral gem-difluorinated cyclopropanes containing an all-carbon quaternary stereocenter by rhodium-catalyzed stereoablative kinetic resolution. The activation of a sterically hindered all-carbon quaternary C-C bond through oxidative addition with a chiral rhodium complex is proposed as the enantiodetermining step. A wide range of gem-difluorinated cyclopropanes can be obtained with excellent ee values (ee = 87% to >99.9%), which are demonstrated to be useful chiral fluorine-containing building blocks by a series of postfunctionalizations.


Asunto(s)
Rodio , Carbono/química , Catálisis , Ciclopropanos/química , Estructura Molecular , Rodio/química , Estereoisomerismo
10.
Sci Total Environ ; 847: 157635, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35905962

RESUMEN

Microplastics (MPs) are verified to affect the fate of ammonia (NH3) in agricultural soils. However, the impacts and mechanisms of MPs coupled with biochar (BC), a widely used agricultural conditioner, on NH3 losses are mostly untapped. The aim of this study was to investigate the mechanisms of common MPs (i.e., polyethylene, polyester, and polyacrylonitrile) and straw-derived BC on NH3 volatilization in rice-wheat rotation soils. Results showed that BC alone and MPs with BC (MPs + BC) reduced 5.5 % and 11.2-26.6 % cumulative NH3 volatilization than the control (CK), respectively, in the rice season. The increased nitrate concentration and soil cation exchange capacity were dominant contributors to the reduced soil NH3 volatilization in the rice season. BC and MPs + BC persistently reduced 44.5 % and 60.0-62.6 % NH3 losses than CK in the wheat season as influenced by pH and nitrate concentration. Moreover, BC and MPs + BC increased humic acid-like substances in soil dissolved organic matter by an average of 159.1 % and 179.6 % than CK, respectively, in rice and wheat seasons. The increased adsorption of soil NH4+ and the promotion of crop root growth were the main mechanisms of NH3 reduction. Our findings partially revealed the mechanisms of the coexistence of MPs and BC on NH3 mitigation in rice-wheat rotational ecosystems.


Asunto(s)
Amoníaco , Oryza , Amoníaco/análisis , Carbón Orgánico/química , Ecosistema , Fertilizantes/análisis , Sustancias Húmicas , Microplásticos , Nitratos , Nitrógeno/análisis , Oryza/química , Plásticos , Poliésteres , Polietilenos , Suelo/química , Triticum , Volatilización
11.
Nanomaterials (Basel) ; 12(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35683703

RESUMEN

Porous carbon derived from grape marc (GM) was synthesized via carbonization and chemical activation processes. Extrinsic nitrogen (N)-dopant in GM, activated by KOH, could render its potential use in supercapacitors effective. The effects of chemical activators such as potassium hydroxide (KOH) and zinc chloride (ZnCl2) were studied to compare their activating power toward the development of pore-forming mechanisms in a carbon electrode, making them beneficial for energy storage. GM carbon impregnated with KOH for activation (KAC), along with urea as the N-dopant (KACurea), exhibited better morphology, hierarchical pore structure, and larger surface area (1356 m2 g-1) than the GM carbon activated by ZnCl2 (ZnAC). Moreover, density functional theory (DFT) investigations showed that the presence of N-dopant on a graphite surface enhances the chemisorption of O adsorbates due to the enhanced charge-transfer mechanism. KACurea was tested in three aqueous electrolytes with different ions (LiOH, NaOH, and NaClO4), which delivered higher specific capacitance, with the NaOH electrolyte exhibiting 139 F g-1 at a 2 mA current rate. The NaOH with the alkaline cation Na+ offered the best capacitance among the electrolytes studied. A multilayer perceptron (MLP) model was employed to describe the effects of synthesis conditions and physicochemical and electrochemical parameters to predict the capacitance and power outputs. The proposed MLP showed higher accuracy, with an R2 of 0.98 for capacitance prediction.

12.
Chemosphere ; 302: 134771, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35500635

RESUMEN

The application of waste biomass-derived hydrochar to soil may cause extremely intensive nitrous oxide (N2O) fluxes that can challenge our current mechanistic understanding of the global nitrogen cycle in the biosphere. In this study, two waste biomasses were used to prepare cyanobacterial biomas-derived hydrochar (CHC) and wheat straw-derived hydrochar (SHC) for short-term incubation experiments to identify their effects and mechanisms of waste biomass-derived hydrochar on soil N2O efflux, with time-series samples collected for N2O efflux and soil analysis. The results showed that CHC and SHC caused short-term bursts of N2O effluxes without nitrogen inputs. Moreover, the enrichment of exogenous organics and nutrients at the hydrochar-soil interface was identified as the key factor for enhancing N2O fluxes, which stimulated microbial nitrification (i.e., increased gene copy number of ammonia oxidizing bacteria) and denitrification (i.e., increased gene copy number of nitrate and N2O reducing bacteria) processes. The concentrations of Fe (II) and hydroxyl radicals (HO•) were 6.49 and 5.63 times higher, respectively, in the hydrochar layer of CHC than SHC amendment. Furthermore, structural equation models demonstrated that HO•, as well as soil microbiomes, played an important role in driving N2O fluxes. Together, our findings provide a deeper insight into the assessment and prognosis of the short-term environmental risk arising from agricultural waste management in integrated agriculture. Further studies under practical field application conditions are warranted to verify the findings.


Asunto(s)
Óxido Nitroso , Suelo , Agricultura , Bacterias/genética , Radical Hidroxilo/análisis , Nitrificación , Nitrógeno/análisis , Óxido Nitroso/análisis , Suelo/química , Microbiología del Suelo
13.
Molecules ; 26(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34770889

RESUMEN

Rare earth metal oxides (REMOs) have gained considerable attention in recent years owing to their distinctive properties and potential applications in electronic devices and catalysts. Particularly, cerium dioxide (CeO2), also known as ceria, has emerged as an interesting material in a wide variety of industrial, technological, and medical applications. Ceria can be synthesized with various morphologies, including rods, cubes, wires, tubes, and spheres. This comprehensive review offers valuable perceptions into the crystal structure, fundamental properties, and reaction mechanisms that govern the well-established surface-assisted reactions over ceria. The activity, selectivity, and stability of ceria, either as a stand-alone catalyst or as supports for other metals, are frequently ascribed to its strong interactions with the adsorbates and its facile redox cycle. Doping of ceria with transition metals is a common strategy to modify the characteristics and to fine-tune its reactive properties. DFT-derived chemical mechanisms are surveyed and presented in light of pertinent experimental findings. Finally, the effect of surface termination on catalysis by ceria is also highlighted.

14.
Materials (Basel) ; 14(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805462

RESUMEN

This paper reviews the phase structures and oxidation kinetics of complex Ti-Al alloys at oxidation temperatures in the range of 600-1000 °C. The mass gain and parabolic rate constants of the alloys under isothermal exposure at 100 h (or equivalent to cyclic exposure for 300 cycles) is compared. Of the alloying elements investigated, Si appeared to be the most effective in improving the oxidation resistance of Ti-Al alloys at high temperatures. The effect of alloying elements on the mechanical properties of Ti-Al alloys is also discussed. Significant improvement of the mechanical properties of Ti-Al alloys by element additions has been observed through the formation of new phases, grain refinement, and solid solution strengthening.

15.
Angew Chem Int Ed Engl ; 60(19): 10626-10631, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33599074

RESUMEN

Herein, we report a rhodium catalyzed directing-group free regioselective C-H allylation of simple arenes. Readily available gem-difluorinated cyclopropanes can be employed as highly reactive allyl surrogates via a sequence of C-C and C-F bond activation, providing allyl arene derivatives in good yields with high regioselectivity under mild conditions. The robust methodology enables facile late-stage functionalization of complex bioactive molecules. The high efficiency of this reaction is also demonstrated by the high turnover number (TON, up to 1700) of the rhodium catalyst on gram-scale experiments. Preliminary success on kinetic resolution of this transformation is achieved, providing a promising access to enantio-enriched gem-difluorinated cyclopropanes.

16.
Chemosphere ; 254: 126766, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32957264

RESUMEN

Co-pyrolysis of brominated flame retardants (BFRs) with polymeric materials prevails in scenarios pertinent to thermal recycling of bromine-laden objects; most notably the non-metallic fraction in e-waste. Hydro-dehalogenation of aromatic compounds in a hydrogen-donating medium constitutes a key step in refining pyrolysis oil of BFRs. Chemical reactions underpinning this process are poorly understood. Herein, we utilize accurate density functional theory (DFT) calculations to report thermo-kinetic parameters for the reaction of solid polyethylene, PE, (as a surrogate model for aliphatic polymers) with prime products sourced from thermal decomposition of BFRs, namely, HBr, bromophenols; benzene, and phenyl radical. Facile abstraction of an ethylenic H by Br atoms is expected to contribute to the formation of abundant HBr concentrations in practical systems. Likewise, a relatively low energy barrier for aromatic Br atom abstraction from a 2-bromophenol molecule by an alkyl radical site, concurs with the reported noticeable hydro-debromination capacity of PE. Pathways entailing a PE-induced bromination of a phenoxy radical should be hindered in view of high energy barrier for a Br transfer into the para position of the phenoxy radical. Adsorption of a phenoxy radical onto a Cu(Br) site substituted at the PE chain affords the commonly discussed PBDD/Fs precursor of a surface-bounded bromophenolate adduct. Such scenario arises due to the heterogeneous integration of metals into the bromine-rich carbon matrix in primitive recycling of e-waste and their open burning.


Asunto(s)
Retardadores de Llama/análisis , Polietileno/química , Bromo , Halogenación , Hidrocarburos Bromados/análisis , Cinética , Fenoles , Pirólisis , Reciclaje
17.
ACS Omega ; 5(7): 3405-3417, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32118155

RESUMEN

A simple two-step approach has been employed to synthesize a cobalt-nickel-copper ternary metal oxide, involving electrochemical precipitation/deposition followed by calcination. The ternary metal hydroxide gets precipitated/deposited from a nitrate bath at the cathode in the catholyte chamber of a two-compartment diaphragm cell at room temperature having a pH ≈ 3. The microstructure of the ternary hydroxides was modified in situ by two different surfactants such as cetyltrimethylammonium bromide and dodecyltrimethylammonium bromide in the bath aiming for enhanced storage performance in the electrochemical devices. The effect of the surfactant produces a transition from microspheres to nanosheets, and the effect of micelle concentration produces nanospheres at a higher ion concentration. The ternary hydroxides were calcined at 300 °C to obtain the desired ternary mixed oxide materials as the electrode for hybrid supercapacitors. X-ray diffraction analysis confirmed the formation of the ternary metal oxide product. The scanning electron microscopy images associated with energy-dispersive analysis suggest the formation of a nanostructured porous composite. Ternary metal oxide in the absence and presence of a surfactant served as the cathode and activated carbon served as the anode for supercapacitor application. DTAB-added metal oxide showed 95.1% capacitance retention after 1000 cycles, achieving 188 F/g at a current density of 0.1 A/g, and thereafter stable until 5000 cycles, inferring that more transition metals in the oxide along with suitable surfactants at an appropriate micellar concentration may be better for redox reactions and achieving higher electrical conductivity and smaller charge transfer resistance. The role of various metal cations and surfactants as additives in the electrolytic bath has been discussed.

18.
J Hazard Mater ; 391: 122248, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32062348

RESUMEN

Nowadays, increasing the risk for copper leaching into the drinking water in homes, hotels and schools has become unresolved issues all around the countries such as Canada, the United States, and Malaysia. The leaching of copper in tap water is due to a combination of acidic water, damaged pipes, and corroded plumbing fixtures. To remedy this global problem, a triple interconnected structure of CdS/Au/GQDs was designed as a photo-to-electron conversion medium for a real time and selective visible-light-prompt photoelectrochemical (PEC) sensor for Cu2+ ions in real water samples. The synergistic interaction of the CdS/Au/GQDs enabled the smooth transportation of charge carriers to the charge collector and provided a channel to inhibit the charge recombination reaction. Thus, a detection limit of 2.27 nM was obtained, which is 10,000 fold lower than that of WHO's Guidelines for Drinking-water Quality (∼30 µM). The photocurrent reduction was negligible after 30 days of storage under ambient conditions, suggesting the high stability of photoelectrode. Moreover, the real-time monitoring of Cu2+ ions in real samples was performed with satisfactory results, confirming the capability of the investigated photoelectrode as the most practical detector for trace amounts of Cu2+ ions.


Asunto(s)
Compuestos de Cadmio/efectos de la radiación , Cobre/análisis , Técnicas Electroquímicas , Luz , Nanotubos/efectos de la radiación , Sulfuros/efectos de la radiación , Contaminantes Químicos del Agua/análisis , Compuestos de Cadmio/química , Cobre/química , Electrodos , Oro/química , Grafito/química , Nanotubos/química , Puntos Cuánticos/química , Sulfuros/química , Contaminantes Químicos del Agua/química
19.
Chemosphere ; 240: 124921, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31726593

RESUMEN

The interplay of phenolic molecules with 3d transition metals, such as Fe and Cu, and their oxide surfaces, provide important fingerprints for environmental burdens associated with thermal recycling of e-waste and subsequent generation of notorious dioxins compounds and phenoxy-type Environmental Persistent Free Radicals (EPFRs). DRIFTS and EPR measurements established a strong interaction of the phenol molecule with transition metal oxides via synthesis of phenolic- and catecholic-type EPFRs intermediates. In this contribution, we comparatively examined the dissociative adsorption of a phenol molecule, as the simplest model for phenolic-type compounds, on Cu and Fe surfaces and their partially oxidized configurations through accurate density functional theory (DFT) studies. The underlying aim is to elucidate the specific underpinning mechanism forming phenoxy- or phenolate-type EFPRs. Simulated results show that, the phenol molecule undergoes fission of its hydroxyl's O-H bond via accessible activation energies. These values are lower by 46.5-74.1% when compared with the analogous gas phase value. Physisorbed molecules of phenol incur very low binding energies in the range of -2.1 to -5.5 over clean Cu/Fe and their oxides surfaces. Molecular attributes based on charge transfer and geometrical features are in accord with the very weak interaction in physisorbed states. Thermo-kinetic parameters established over the temperature region of 300 and 1000 K, exhibit a lower activation energy for scission of phenolic's O-H bonds over the oxide surfaces in reference to their pure surfaces (24.7 and 43.0 kcal mol-1vs 38.4 and 47.0 kcal mol-1).


Asunto(s)
Radicales Libres/química , Fenol/química , Fenoles/química , Adsorción , Catecoles , Dioxinas , Radical Hidroxilo , Oxidación-Reducción , Óxidos/química , Temperatura , Elementos de Transición
20.
Heliyon ; 5(3): e01316, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30949596

RESUMEN

Three Australian native Eucalyptus species, i.e., Eucalyptus woodwardii, Eucalyptus pachyphylla and Eucalyptus dolorosa, were investigated, for the first time, with respect to the hydrophobicity of their leaves. It is well established that these leaves exhibit exceptionally high water repellency, in addition to an extraordinary ability to retain water, albeit their specific wetting mechanisms are still poorly understood. To identify the critical factors underlying this phenomenon, the surface topography of these leaves was subjected to micro-examination (SEM). Micro- and nanometer scale surface roughness was revealed, resembling that of the quintessential "lotus effect". Surface free energy analysis was performed on two models based on the surface topographies of the study Eucalyptus species and lotus, in order to study wetting transitions on these specific microscopic surface features. The influence of surface geometrical parameters, such as edge-to-edge distance, base radius and cylindrical height, on surface free energy with different liquid penetration depths was studied with these two models. Larger energy barriers and smaller liquid-solid contact areas were more influential in the calculations for the lotus than for Eucalyptus. The information obtained from these two models may be useful for guiding the design of novel artificial surfaces in the collection and transport of micro-volume liquids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...