Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622771

RESUMEN

Plant cell death is regulated in plant-pathogen interactions. While some aspartic proteases (APs) participate in regulating programmed cell death or defense responses, the defense functions of most APs remain largely unknown. Here, we report on a virulence factor, PlPeL8, which is a pectate lyase found in the hemibiotrophic pathogen Peronophythora litchii. Through in vivo and in vitro assays, we confirmed the interaction between PlPeL8 and LcAP1 from litchi, and identified LcAP1 as a positive regulator of plant immunity. PlPeL8 induced cell death associated with NbSOBIR1 and NbMEK2. The 11 conserved residues of PlPeL8 were essential for inducing cell death and enhancing plant susceptibility. Twenty-three LcAPs suppressed cell death induced by PlPeL8 in Nicotiana benthamiana depending on their interaction with PlPeL8. The N-terminus of LcAP1 was required for inhibiting PlPeL8-triggered cell death and susceptibility. Furthermore, PlPeL8 led to higher susceptibility in NbAPs-silenced N. benthamiana than the GUS-control. Our results indicate the crucial roles of LcAP1 and its homologs in enhancing plant resistance via suppression of cell death triggered by PlPeL8, and LcAP1 represents a promising target for engineering disease resistance. Our study provides new insights into the role of plant cell death in the arms race between plants and hemibiotrophic pathogens.

2.
Nat Commun ; 15(1): 22, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167822

RESUMEN

Cell wall degrading enzymes, including pectate lyases (PeLs), released by plant pathogens, break down protective barriers and/or activate host immunity. The direct interactions between PeLs and plant immune-related proteins remain unclear. We identify two PeLs, PlPeL1 and PlPeL1-like, critical for full virulence of Peronophythora litchii on litchi (Litchi chinensis). These proteins enhance plant susceptibility to oomycete pathogens in a PeL enzymatic activity-dependent manner. However, LcPIP1, a plant immune regulator secreted by litchi, binds to PlPeL1/PlPeL1-like, and attenuates PlPeL1/PlPeL1-like induced plant susceptibility to Phytophthora capsici. LcPIP1 also induces cell death and various immune responses in Nicotiana benthamiana. Conserved in plants, LcPIP1 homologs bear a conserved "VDMASG" motif and exhibit immunity-inducing activity. Furthermore, SERK3 interacts with LcPIP1 and is required for LcPIP1-induced cell death. NbPIP1 participates in immune responses triggered by the PAMP protein INF1. In summary, our study reveals the dual roles of PlPeL1/PlPeL1-like in plant-pathogen interactions: enhancing pathogen virulence through PeL enzymatic activity while also being targeted by LcPIP1, thus enhancing plant immunity.


Asunto(s)
Litchi , Phytophthora , Litchi/metabolismo , Phytophthora/fisiología , Polisacárido Liasas/metabolismo , Proteínas/metabolismo , Inmunidad de la Planta , Muerte Celular , Enfermedades de las Plantas
3.
Microorganisms ; 12(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38258010

RESUMEN

Litchi is a fruit of significant commercial value; however, its quality and yield are hindered by downy blight disease caused by Peronophythora litchii. In this study, volatile organic compounds (VOCs) from Streptomyces abikoensis TJGA-19 were investigated for their antifungal effects and studied in vitro and in planta for the suppression of litchi downy blight disease in litchi leaves and fruits. The growth of P. litchii was inhibited by VOCs produced by TJGA-19 cultivated on autoclaved wheat seeds for durations of 10, 20, or 30 days. Volatiles from 20-day-old cultures were more active in inhibition effect against P. litchii than those from 10- or 30-day-old cultures. These volatiles inhibit the growth of mycelia, sporulation, and oospore production, without any significant effect on sporangia germination. Additionally, the VOCs were effective in suppressing disease severity in detached litchi leaf and fruit infection assays. With the increase in the weight of the wheat seed culture of S.abikoensis TJGA-19, the diameters of disease spots on leaves, as well as the incidence rate and disease indices on fruits, decreased significantly. Microscopic results from SEM and TEM investigations showed abnormal morphology of sporangia, mycelia, and sporangiophores, as well as organelle damage in P. litchii caused by VOCs of TJGA-19. Spectroscopic analysis revealed the identification of 22 VOCs produced by TJGA-19, among which the most dominant compound was 2-Methyliborneol. These findings indicated the significant role of TJGA-19 compounds in the control of litchi downy blight disease and in improving fruit quality.

4.
Plant Physiol ; 194(3): 1779-1793, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38039157

RESUMEN

During initial stages of microbial invasion, the extracellular space (apoplast) of plant cells is a vital battleground between plants and pathogens. The oomycete plant pathogens secrete an array of apoplastic carbohydrate active enzymes, which are central molecules for understanding the complex plant-oomycete interactions. Among them, pectin acetylesterase (PAE) plays a critical role in the pathogenesis of plant pathogens including bacteria, fungi, and oomycetes. Here, we demonstrated that Peronophythora litchii (syn. Phytophthora litchii) PlPAE5 suppresses litchi (Litchi chinensis) plant immunity by interacting with litchi lipid transfer protein 1 (LcLTP1). The LcLTP1-binding activity and virulence function of PlPAE5 depend on its PAE domain but not on its PAE activity. The high expression of LcLTP1 enhances plant resistance to oomycete and fungal pathogens, and this disease resistance depends on BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) and Suppressor of BIR1 (SOBIR1) in Nicotiana benthamiana. LcLTP1 activates the plant salicylic acid (SA) signaling pathway, while PlPAE5 subverts the LcLTP1-mediated SA signaling pathway by destabilizing LcLTP1. Conclusively, this study reports a virulence mechanism of oomycete PAE suppressing plant LTP-mediated SA immune signaling and will be instrumental for boosting plant resistance breeding.


Asunto(s)
Proteínas Portadoras , Esterasas , Litchi , Phytophthora , Fitomejoramiento , Transducción de Señal
5.
Genes (Basel) ; 14(12)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38137037

RESUMEN

Litchi (Litchi chinensis Sonn.) is a tropical fruit originating from southern China that is currently cultivated in subtropical and tropical regions worldwide. Litchi anthracnose, caused by Colletotrichum fructicola, a dominant species of Colletotrichum spp., is an important disease of litchi that damages the fruits in fields and in post-harvest storage. Real-time quantitative PCR (RT-qPCR) is a common technique with which to detect the expression of and function of target genes quickly and precisely, and stable reference genes are crucial. However, there is no comprehensive information on suitable reference genes of C. fructicola present. Here, we designed eight candidate genes (GAPDH, α-tubulin, 18S, ß-tubulin, EF1a, TATA, RPS5, and EF3) using RefFinder software (programs: geNorm, ΔCt, BestKeeper, and NormFinder) to investigate their reliability in the detection of C. fructicola under five different treatments (fungal development stage, temperature, UV, culture medium, and fungicide). The results showed the optimal reference genes under different conditions: EF1a and α-tubulin for developmental stage; α-tubulin and ß-tubulin for temperature; α-tubulin and RPS5 for UV treatment; RPS5 and α-tubulin for culture medium; α-tubulin, GAPDH, and TATA for fungicide treatments. The corresponding expression patterns of HSP70 (Heat shock protein 70) were significantly different when the most and the least stable reference genes were selected when treated under different conditions. Our study provides the first detailed list of optimal reference genes for the analysis of gene expression in C. fructicola via RT-qPCR, which should be useful for future functional studies of target genes in C. fructicola.


Asunto(s)
Colletotrichum , Fungicidas Industriales , Litchi , Litchi/genética , Colletotrichum/genética , Frutas , Tubulina (Proteína)/genética , Reproducibilidad de los Resultados , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Expresión Génica
6.
Microbiol Spectr ; 11(6): e0205723, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37819114

RESUMEN

IMPORTANCE: Reactive oxygen species play an important role in pathogen-plant interactions. In fungi, cytochrome c-peroxidase maintains intracellular ROS homeostasis by utilizing H2O2 as an electron acceptor to oxidize ferrocytochrome c, thereby contributing to disease pathogenesis. In this study, our investigation reveals that the cytochrome c-peroxidase encoding gene, SsCCP1, not only plays a key role in resisting H2O2 toxicity but is also essential for the mating/filamentation and pathogenicity of S. scitamineum. We further uncover that SsCcp1 mediates the expression of SsPrf1 by maintaining intracellular ROS homeostasis to regulate S. scitamineum mating/filamentation. Our findings provide novel insights into how cytochrome c-peroxidase regulates sexual reproduction in phytopathogenic fungi, presenting a theoretical foundation for designing new disease control strategies.


Asunto(s)
Citocromos c , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno/metabolismo , Reproducción , Homeostasis , Peroxidasas , Enfermedades de las Plantas/microbiología
7.
Microorganisms ; 11(6)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37375066

RESUMEN

Sporisorium scitamineum, the basidiomycetous fungus that causes sugarcane smut and leads to severe losses in sugarcane quantity and quality, undergoes sexual mating to form dikaryotic hyphae capable of invading the host cane. Therefore, suppressing dikaryotic hyphae formation would potentially be an effective way to prevent host infection by the smut fungus, and the following disease symptom developments. The phytohormone methyl jasmonate (MeJA) has been shown to induce plant defenses against insects and microbial pathogens. In this study, we will verify that the exogenous addition of MeJA-suppressed dikaryotic hyphae formation in S. scitamineum and Ustilago maydis under in vitro culture conditions, and the maize smut symptom caused by U. maydis, could be effectively suppressed by MeJA in a pot experiment. We constructed an Escherichia coli-expressing plant JMT gene, encoding a jasmonic acid carboxyl methyl transferase that catalyzes conversion from jasmonic acid (JA) to MeJA. By GC-MS, we will confirm that the transformed E. coli, designated as the pJMT strain, was able to produce MeJA in the presence of JA and S-adenosyl-L-methionine (SAM as methyl donor). Furthermore, the pJMT strain was able to suppress S. scitamineum filamentous growth under in vitro culture conditions. It waits to further optimize JMT expression under field conditions in order to utilize the pJMT strain as a biocontrol agent (BCA) of sugarcane smut disease. Overall, our study provides a potentially novel method for controlling crop fungal diseases by boosting phytohormone biosynthesis.

8.
Plant Physiol ; 193(1): 756-774, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37232407

RESUMEN

Oomycete pathogens can secrete hundreds of effectors into plant cells to interfere with the plant immune system during infection. Here, we identified a Arg-X-Leu-Arg (RXLR) effector protein from the most destructive pathogen of litchi (Litchi chinensis Sonn.), Peronophythora litchii, and named it P. litchii avirulence homolog 202 (PlAvh202). PlAvh202 could suppress cell death triggered by infestin 1 or avirulence protein 3a/resistance protein 3a in Nicotiana benthamiana and was essential for P. litchii virulence. In addition, PlAvh202 suppressed plant immune responses and promoted the susceptibility of N. benthamiana to Phytophthora capsici. Further research revealed that PlAvh202 could suppress ethylene (ET) production by targeting and destabilizing plant S-adenosyl-L-methionine synthetase (SAMS), a key enzyme in the ET biosynthesis pathway, in a 26S proteasome-dependent manner without affecting its expression. Transient expression of LcSAMS3 induced ET production and enhanced plant resistance, whereas inhibition of ET biosynthesis promoted P. litchii infection, supporting that litchi SAMS (LcSAMS) and ET positively regulate litchi immunity toward P. litchii. Overall, these findings highlight that SAMS can be targeted by the oomycete RXLR effector to manipulate ET-mediated plant immunity.


Asunto(s)
Phytophthora infestans , Proteínas/metabolismo , Inmunidad de la Planta/genética , Virulencia , Etilenos/metabolismo , Enfermedades de las Plantas , Nicotiana/genética , Nicotiana/metabolismo
10.
Front Microbiol ; 13: 984672, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160220

RESUMEN

Oomycetes cause hundreds of destructive plant diseases, threatening agricultural production and food security. These fungus-like eukaryotes show multiple sporulation pattern including the production of sporangium, zoospore, chlamydospore and oospore, which are critical for their survival, dispersal and infection on hosts. Recently, genomic and genetic technologies have greatly promoted the study of molecular mechanism of sporulation in the genus Phytophthora and Peronophythora. In this paper, we characterize the types of asexual and sexual spores and review latest progress of these two genera. We summarize the genes encoding G protein, mitogen-activated protein kinase (MAPK) cascade, transcription factors, RNA-binding protein, autophagy-related proteins and so on, which function in the processes of sporangium production and cleavage, zoospore behaviors and oospore formation. Meanwhile, various molecular, chemical and electrical stimuli in zoospore behaviors are also discussed. Finally, with the molecular mechanism of sporulation in Phytophthora and Peronophythora is gradually being revealed, we propose some thoughts for the further research and provide the alternative strategy for plant protection against phytopathogenic oomycetes.

11.
J Fungi (Basel) ; 8(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012854

RESUMEN

Morphogenesis is a strictly regulated efficient system in eukaryotes for adapting to environmental changes. However, the morphogenesis regulatory mechanism in smut fungi is not clear. This study reports a relationship between MAP kinase Hog1 and cAMP-dependent protein kinase A catalytic subunit (Adr1) for the morphological regulation in the sugarcane pathogen Sporisorium scitamineum. The results demonstrated that MAP kinase Hog1 and cAMP/PKA signaling pathways are essential for the morphological development of S. scitamineum. Interestingly, MAP kinase Hog1 and cAMP/PKA signaling pathways' defective mutants exhibit an opposite morphological phenotype. The morphology of cAMP/PKA defective mutants is recovered by deleting the SsHOG1 gene. However, MAP kinase Hog1 and cAMP-dependent protein kinase catalytic subunit Adr1 do not interfere with each other. Further investigations showed that kinase Hog1 and Adr1 antagonistically regulates the vacuolar size, which contributes to the cell size and determines the cellular elongation rates. Kinase Hog1 and Adr1 also antagonistically balanced the cell wall integrity and permeability. Taken together, kinase Hog1- and Adr1-based opposing morphogenesis regulation of S. scitamineum by controlling the vacuolar size and cell wall permeability is established during the study.

12.
Microbiol Spectr ; 10(4): e0057022, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35862944

RESUMEN

Sugarcane smut caused by the basidiomycetous fungus Sporisorium scitamineum leads to severe economic losses globally. Sexual mating/filamentation of S. scitamineum is critical for its pathogenicity, as only the dikaryotic hyphae formed after sexual mating are capable of invading the host cane. Our comparative transcriptome analysis showed that the mitogen-activated protein kinase (MAPK) pathway and the AGC kinase Agc1 (orthologous to yeast Rim15), both governing S. scitamineum mating/filamentation, were induced by elevated tryptophol level, supporting a positive regulation of S. scitamineum mating/filamentation by tryptophol. However, the biosynthesis pathway of tryptophol remains unknown in S. scitamineum. Here, we identified an aminotransferase orthologous to the established tryptophan aminotransferase Tam1/Aro8, catalyzing the first step of tryptophan-dependent indole-3-acetic acid (IAA) production as well as that of the Ehrlich pathway for tryptophol production. We designated this S. scitamineum aminotransferase as SsAro8 and found that it was essential for mating/filamentation. Comparative metabolomics analysis revealed that SsAro8 was involved in tryptophan metabolism, likely for producing important intermediate products, including tryptophol. Exogenous addition of tryptophan or tryptophol could differentially restore mating/filamentation in the ssaro8Δ mutant, indicating that in addition to tryptophol, other product(s) of tryptophan catabolism may also be involved in S. scitamineum mating/filamentation regulation. S. scitamineum could also produce IAA, partially dependent on SsAro8 function. Surprisingly, photodestruction of IAA produced the compound(s) able to suppress S. scitamineum growth/differentiation. Lastly, we found that SsAro8 was required for proper biofilm formation, oxidative stress tolerance, and full pathogenicity in S. scitamineum. Overall, our study establishes the aminotransferase SsAro8 as an essential regulator of S. scitamineum pathogenic differentiation, as well as fungus-host interaction, and therefore of great potential as a molecular target for sugarcane smut disease control. IMPORTANCE Sugarcane smut caused by the basidiomycete fungus S. scitamineum leads to massive economic losses in sugarcane plantation globally. Dikaryotic hyphae formation (filamentous growth) and biofilm formation are two important aspects in S. scitamineum pathogenesis, yet the molecular regulation of these two processes was not as extensively investigated as that in the model pathogenic fungi, e.g., Candida albicans, Ustilago maydis, or Cryptococcus neoformans. In this study, a tryptophan aminotransferase ortholog was identified in S. scitamineum, designated SsAro8. Functional characterization showed that SsAro8 positively regulates both filamentous growth and biofilm formation, respectively, via tryptophol-dependent and -independent manners. Furthermore, SsAro8 is required for full pathogenicity and, thus, is a promising molecular target for designing anti-smut strategy.


Asunto(s)
Basidiomycota , Saccharum , Ustilaginales , Enfermedades de las Plantas/microbiología , Saccharum/metabolismo , Saccharum/microbiología , Transaminasas/metabolismo , Triptófano/metabolismo , Triptófano-Transaminasa/metabolismo , Ustilaginales/fisiología
13.
BMC Microbiol ; 22(1): 155, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35689202

RESUMEN

BACKGROUND: Organic mulch is an important management practice in agricultural production to improve soil quality, control crop pests and diseases and increase the biodiversity of soil microecosystem. However, the information about soil microbial diversity and composition in litchi plantation response to organic mulch and its attribution to litchi downy blight severity was limited. This study aimed to investigate the effect of organic mulch on litchi downy blight, and evaluate the biodiversity and antimicrobial potential of soil microbial community of litchi plantation soils under organic mulch. RESULTS: Organic mulch could significantly suppress the disease incidence in the litchi plantation, and with a reduction of 37.74% to 85.66%. As a result of high-throughput 16S rRNA and ITS rDNA gene illumine sequencing, significantly higher bacterial and fungal community diversity indexes were found in organic mulch soils, the relative abundance of norank f norank o Vicinamibacterales, norank f Vicinamibacteraceae, norank f Xanthobacteraceae, Unclassified c sordariomycetes, Aspergillus and Thermomyces were significant more than that in control soils. Isolation and analysis of antagonistic microorganism showed that 29 antagonistic bacteria strains and 37 antagonistic fungi strains were unique for mulching soils. CONCLUSIONS: Thus, we believe that organic mulch has a positive regulatory effect on the litchi downy blight and the soil microbial communities, and so, is more suitable for litchi plantation.


Asunto(s)
Litchi , Micobioma , Bacterias , Litchi/genética , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del Suelo
14.
PLoS Pathog ; 18(5): e1010157, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35512028

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that regulate protein-coding gene expression primarily found in plants and animals. Fungi produce microRNA-like RNAs (milRNAs) that are structurally similar to miRNAs and functionally important in various biological processes. The fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Banana Fusarium vascular wilt that threatens global banana production. It remains uncharacterized about the biosynthesis and functions of milRNAs in Foc. In this study, we investigated the biological function of milRNAs contributing to Foc pathogenesis. Within 24 hours post infecting the host, the Argonaute coding gene FoQDE2, and two Dicer coding genes FoDCL1 and FoDCL2, all of which are involved in milRNA biosynthesis, were significantly induced. FoQDE2 deletion mutant exhibited decreased virulence, suggesting the involvement of milRNA biosynthesis in the Foc pathogenesis. By small RNA sequencing, we identified 364 small RNA-producing loci in the Foc genome, 25 of which were significantly down-regulated in the FoQDE2 deletion mutant, from which milR-87 was verified as a FoQDE2-depedent milRNA based on qRT-PCR and Northern blot analysis. Compared to the wild-type, the deletion mutant of milR-87 was significantly reduced in virulence, while overexpression of milR-87 enhanced disease severity, confirming that milR-87 is crucial for Foc virulence in the infection process. We furthermore identified FOIG_15013 (a glycosyl hydrolase-coding gene) as the direct target of milR-87 based on the expression of FOIG_15013-GFP fusion protein. The FOIG_15013 deletion mutant displayed similar phenotypes as the overexpression of milR-87, with a dramatic increase in the growth, conidiation and virulence. Transient expression of FOIG_15013 in Nicotiana benthamiana leaves activates the host defense responses. Collectively, this study documents the involvement of milRNAs in the manifestation of the devastating fungal disease in banana, and demonstrates the importance of milRNAs in the pathogenesis and other biological processes. Further analyses of the biosynthesis and expression regulation of fungal milRNAs may offer a novel strategy to combat devastating fungal diseases.


Asunto(s)
Fusarium , MicroARNs , Musa , Expresión Génica , Hidrolasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Musa/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Virulencia/genética
15.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269874

RESUMEN

C2H2 zinc finger is one of the most common motifs found in the transcription factors (TFs) in eukaryotes organisms, which have a broad range of functions, such as regulation of growth and development, stress tolerance and pathogenicity. Here, PlCZF1 was identified to encode a C2H2 zinc finger in the litchi downy blight pathogen Peronophythora litchii. PlCZF1 is conserved in P. litchii and Phytophthora species. In P. litchii, PlCZF1 is highly expressed in sexual developmental and early infection stages. We generated Δplczf1 mutants using the CRISPR/Cas9 method. Compared with the wild type, the Δplczf1 mutants showed no significant difference in vegetative growth and asexual reproduction, but were defective in oospore development and virulence. Further experiments revealed that the transcription of PlM90, PlLLP and three laccase encoding genes were down-regulated in the Δplczf1 mutant. Our results demonstrated that PlCZF1 is a vital regulator for sexual development and pathogenesis in P. litchii.


Asunto(s)
Litchi , Phytophthora , Litchi/genética , Enfermedades de las Plantas/genética , Virulencia/genética , Dedos de Zinc
16.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35163762

RESUMEN

Autophagy is ubiquitously present in eukaryotes. During this process, intracellular proteins and some waste organelles are transported into lysosomes or vacuoles for degradation, which can be reused by the cell to guarantee normal cellular metabolism. However, the function of autophagy-related (ATG) proteins in oomycetes is rarely known. In this study, we identified an autophagy-related gene, PlATG6a, encoding a 514-amino-acid protein in Peronophythora litchii, which is the most destructive pathogen of litchi. The transcriptional level of PlATG6a was relatively higher in mycelium, sporangia, zoospores and cysts. We generated PlATG6a knockout mutants using CRISPR/Cas9 technology. The P. litchii Δplatg6a mutants were significantly impaired in autophagy and vegetative growth. We further found that the Δplatg6a mutants displayed decreased branches of sporangiophore, leading to impaired sporangium production. PlATG6a is also involved in resistance to oxidative and salt stresses, but not in sexual reproduction. The transcription of peroxidase-encoding genes was down-regulated in Δplatg6a mutants, which is likely responsible for hypersensitivity to oxidative stress. Compared with the wild-type strain, the Δplatg6a mutants showed reduced virulence when inoculated on the litchi leaves using mycelia plugs. Overall, these results suggest a critical role for PlATG6a in autophagy, vegetative growth, sporangium production, sporangiophore development, zoospore release, pathogenesis and tolerance to salt and oxidative stresses in P. litchii.


Asunto(s)
Beclina-1/genética , Litchi/crecimiento & desarrollo , Phytophthora/crecimiento & desarrollo , Regulación hacia Arriba , Autofagia , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Litchi/parasitología , Micelio/genética , Micelio/crecimiento & desarrollo , Micelio/patogenicidad , Estrés Oxidativo , Phytophthora/genética , Phytophthora/patogenicidad , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/parasitología , Reproducción Asexuada , Tolerancia a la Sal , Factores de Virulencia/genética
17.
Nat Genet ; 54(1): 73-83, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980919

RESUMEN

Lychee is an exotic tropical fruit with a distinct flavor. The genome of cultivar 'Feizixiao' was assembled into 15 pseudochromosomes, totaling ~470 Mb. High heterozygosity (2.27%) resulted in two complete haplotypic assemblies. A total of 13,517 allelic genes (42.4%) were differentially expressed in diverse tissues. Analyses of 72 resequenced lychee accessions revealed two independent domestication events. The extremely early maturing cultivars preferentially aligned to one haplotype were domesticated from a wild population in Yunnan, whereas the late-maturing cultivars that mapped mostly to the second haplotype were domesticated independently from a wild population in Hainan. Early maturing cultivars were probably developed in Guangdong via hybridization between extremely early maturing cultivar and late-maturing cultivar individuals. Variable deletions of a 3.7 kb region encompassed by a pair of CONSTANS-like genes probably regulate fruit maturation differences among lychee cultivars. These genomic resources provide insights into the natural history of lychee domestication and will accelerate the improvement of lychee and related crops.


Asunto(s)
Domesticación , Genoma de Planta , Litchi/genética , China , Productos Agrícolas/genética , Evolución Molecular , Flores/genética , Haplotipos , Heterocigoto , Litchi/crecimiento & desarrollo , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Especificidad de la Especie
18.
Front Microbiol ; 13: 1093699, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687658

RESUMEN

Introduction: Litchi is an economically important fruit in subtropical countries, but pericarp browning can limit its shelf life outside of controlled storage conditions. Effective and sustainable biological control strategies are needed to protect fruit against postharvest browning. Results and Discussion: In this study, we show that the four bacterial strains Bacillus licheniformis HS10, B. amyloliquefaciens LI24 and PP19, and Exiguobacterium acetylicum SI17 can delay fruit browning in both laboratory trials (LTs) and field plus laboratory trials (FLTs). Strains HS10, LI24, PP19 and SI17 showed 47.74%, 35.39%, 33.58% and 32.53% browning-inhibitory efficacy respectively at 180 h in LT. Litchi sarcocarp interior sourced isolate SI17 showed 74.05% inhibit-brown efficacy at 216 h in FLTs, performing better in FLT than in LT. Furthermore, strains PP19 and SI17 colonized the fruit pericarp and increased total phenolic and anthocyanin contents but decreased peroxidase and polyphenol oxidase activity. This is the first report of E. acetylicum (SI17) and B. licheniformis (HS10) strains acting as biological control agents (BCAs) to delay postharvest browning in litchi fruit. We conclude that PP19 and SI17 are promising BCAs against fruit browning, and their application could be effective for prolonging the shelf life of harvested litchi fruit.

19.
Front Plant Sci ; 12: 783438, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899811

RESUMEN

As an electron transport component, cytochrome b5 is an essential component of the Class II cytochrome P450 monooxygenation system and widely present in animals, plants, and fungi. However, the roles of Cyt-b5 domain proteins in pathogenic oomycetes remain unknown. Peronophythora litchii is an oomycete pathogen that causes litchi downy blight, the most destructive disease of litchi. In this study, we identified a gene, designated PlCB5L1, that encodes a Cyt-b5 domain protein in P. litchii, and characterized its function. PlCB5L1 is highly expressed in the zoospores, cysts, germinated cysts, and during early stages of infection. PlCB5L1 knockout mutants showed reduced growth rate and ß-sitosterol utilization. Importantly, we also found that PlCB5L1 is required for the full pathogenicity of P. litchii. Compared with the wild-type strain, the PlCB5L1 mutants exhibited significantly higher tolerance to SDS and sorbitol, but impaired tolerance to cell wall stress, osmotic stress, and oxidative stress. Further, the expression of genes involved in oxidative stress tolerance, including peroxidase, cytochrome P450, and laccase genes, were down-regulated in PlCB5L1 mutants under oxidative stress. This is the first report that a Cyt-b5 domain protein contributes to the development, stress response, and pathogenicity in plant pathogenic oomycetes.

20.
J Fungi (Basel) ; 7(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34436149

RESUMEN

Many prokaryotes and eukaryotes utilize two-component signaling pathways to counter environmental stress and regulate virulence genes associated with infection. In this study, we identified and characterized a conserved histidine kinase (SsSln1), which is the sensor of the two-component system of Sln1-Ypd1-Ssk1 in Sporisorium scitamineum. SsSln1 null mutant exhibited enhanced mating and virulence capabilities in S. scitamineum, which is opposite to what has been reported in Candida albicans. Further investigations revealed that the deletion of SsSLN1 enhanced SsHog1 phosphorylation and nuclear localization and thus promoted S. scitamineum mating. Interestingly, SsSln1 and cAMP/PKA signaling pathways antagonistically regulated the transcription of pheromone-responsive transcription factor SsPrf1, for regulating S. scitamineum mating and virulence. In short, the study depicts a novel mechanism in which the cross-talk between SsSln1 and cAMP/PKA pathways antagonistically regulates mating and virulence by balancing the transcription of the SsPRF1 gene in S. scitamineum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...