Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.112
Filtrar
1.
Asian J Androl ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38856307

RESUMEN

ABSTRACT: Male infertility is a worldwide health issue, affecting 8%-12% of the global population. Oligoasthenoteratozoospermia (OAT) represents a severe type of male infertility, characterized by reduced sperm count and motility and an increased frequency of sperm with aberrant morphology. Using whole-exome sequencing, this study identified a novel missense mutation (c.848C>A, p.A283E) in the coiled-coil domain-containing 34 gene (CCDC34) in a consanguineous Pakistani family. This rare mutation was predicted to be deleterious and to affect the protein stability. Hematoxylin and eosin staining of spermatozoa from the patient with OAT revealed multiple morphological abnormalities of the flagella and transmission electron microscopy indicated axonemal ultrastructural defects with a lack of outer dynein arms. These findings indicated that CCDC34 plays a role in maintaining the axonemal ultrastructure and the assembly or stability of the outer dynein arms, thus expanding the phenotypic spectrum of CCDC34 missense mutations.

2.
Reprod Biomed Online ; 49(2): 103977, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38824761

RESUMEN

RESEARCH QUESTION: Can microbes vertically transmit from semen and follicular fluid to embryo culture media during assisted reproductive technology (ART) treatment? DESIGN: Spent embryo culture media (SECM), seminal fluid and follicular fluid samples were collected from 61 couples with infertility undergoing ART treatment at the Prince of Wales Hospital, Hong Kong SAR, China. Metagenomic analysis was conducted using 16s rRNA sequencing to identify the source of microbes in SECM, correlation between the semen microbiome and male infertility, and correlation between the follicular fluid microbiome and female infertility. RESULTS: Microbial vertical transmission into SECM was reported in 82.5% of cases, and semen was the main source of contamination in conventional IVF cases. The increased abundances of Staphylococcus spp. and Streptococcus anginosus in semen had negative impacts on total motility and sperm count, respectively (P < 0.001). Significant increases in abundance of the genera Prophyromonas, Neisseria and Facklamia were observed in follicular fluid in women with anovulation, uterine factor infertility and unexplained infertility, respectively (P < 0.01). No significant correlation was found between the bacteria identified in all sample types and ART outcomes, including fertilization rate, embryo development, number of available embryos, and clinical pregnancy rate. CONCLUSION: Embryo culture media can be contaminated during ART treatment, not only by seminal microbes but also by follicular fluid and other sources of microbes. Strong correlations were found between specific microbial taxa in semen and sperm quality, and between the follicular fluid microbiome and the aetiology of female infertility. However, no significant association was found between the microbiomes of SECM, semen and follicular fluid and ART outcomes.

3.
J Appl Toxicol ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828519

RESUMEN

Bisphenol A (BPA) is widely exposed in populations worldwide and has negative effects on spermatogenesis both in animals and humans. The homeostasis of the actin cytoskeleton in the spermatogenic epithelium is crucial for spermatogenesis. Actin cytoskeleton destruction in the seminiferous epithelium is one of the important reasons for BPA-induced spermatogenesis disorder. However, the underlying molecular mechanisms remain largely unexplored. Herein, we explored the role and mechanism of Rsad2, an interferon-stimulated gene in BPA-induced actin cytoskeleton disorder in mouse GC-2 spermatocyte cell lines. After BPA exposure, the actin cytoskeleton was dramatically disrupted and the cell morphology was markedly altered accompanied by a significant increase in Rsad2 expression both in mRNA and protein levels in GC-2 cells. Furthermore, the phalloidin intensities and cell morphology were restored obviously when interfering with the expression of Rsad2 in BPA-treated GC-2 cells. In addition, we observed a significant decrease in intracellular ATP levels after BPA treatment, while the ATP level was obviously upregulated when knocking down the expression of Rsad2 in BPA-treated cells compared to cells treated with BPA alone. Moreover, Rsad2 relocated to mitochondria after BPA exposure in GC-2 cells. BPA promoted Rsad2 expression by activating type I IFN-signaling in GC-2 cells. In summary, Rsad2 mediated BPA-induced actin cytoskeletal disruption in GC-2 cells, which provided data to reveal the mechanism of BPA-induced male reproductive toxicity.

4.
Cell Mol Life Sci ; 81(1): 247, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829550

RESUMEN

BACKGROUND: The high degree of intratumoral genomic heterogeneity is a major obstacle for glioblastoma (GBM) tumors, one of the most lethal human malignancies, and is thought to influence conventional therapeutic outcomes negatively. The proneural-to-mesenchymal transition (PMT) of glioma stem cells (GSCs) confers resistance to radiation therapy in glioblastoma patients. POLD4 is associated with cancer progression, while the mechanisms underlying PMT and tumor radiation resistance have remained elusive. METHOD: Expression and prognosis of the POLD family were analyzed in TCGA, the Chinese Glioma Genome Atlas (CGGA) and GEO datasets. Tumorsphere formation and in vitro limiting dilution assay were performed to investigate the effect of UCHL3-POLD4 on GSC self-renewal. Apoptosis, TUNEL, cell cycle phase distribution, modification of the Single Cell Gel Electrophoresis (Comet), γ-H2AX immunofluorescence, and colony formation assays were conducted to evaluate the influence of UCHL3-POLD4 on GSC in ionizing radiation. Coimmunoprecipitation and GST pull-down assays were performed to identify POLD4 protein interactors. In vivo, intracranial xenograft mouse models were used to investigate the molecular effect of UCHL3, POLD4 or TCID on GCS. RESULT: We determined that POLD4 was considerably upregulated in MES-GSCs and was associated with a meagre prognosis. Ubiquitin carboxyl terminal hydrolase L3 (UCHL3), a DUB enzyme in the UCH protease family, is a bona fide deubiquitinase of POLD4 in GSCs. UCHL3 interacted with, depolyubiquitinated, and stabilized POLD4. Both in vitro and in vivo assays indicated that targeted depletion of the UCHL3-POLD4 axis reduced GSC self-renewal and tumorigenic capacity and resistance to IR treatment by impairing homologous recombination (HR) and nonhomologous end joining (NHEJ). Additionally, we proved that the UCHL3 inhibitor TCID induced POLD4 degradation and can significantly enhance the therapeutic effect of IR in a gsc-derived in situ xenograft model. CONCLUSION: These findings reveal a new signaling axis for GSC PMT regulation and highlight UCHL3-POLD4 as a potential therapeutic target in GBM. TCID, targeted for reducing the deubiquitinase activity of UCHL3, exhibited significant synergy against MES GSCs in combination with radiation.


Asunto(s)
Células Madre Neoplásicas , Tolerancia a Radiación , Ubiquitina Tiolesterasa , Humanos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Tolerancia a Radiación/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de la radiación , Animales , Ratones , Línea Celular Tumoral , Glioma/patología , Glioma/genética , Glioma/radioterapia , Glioma/metabolismo , Apoptosis/genética , Apoptosis/efectos de la radiación , Ubiquitinación , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Ratones Desnudos , Fenotipo , Regulación Neoplásica de la Expresión Génica , Pronóstico
5.
Org Lett ; 26(23): 4945-4952, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38832831

RESUMEN

Described herein is an efficient copper-catalyzed tandem alkyne indolylcupration-initiated 1,2-indole migration/6π-electrocyclic reaction of allene-ynamides with indoles by the in situ-generated metal carbenes. This method allows the efficient synthesis of valuable indole-fused spirobenzo[f]indole-cyclohexanes with high regio- and stereoselectivity. In addition, this reaction affords rapid access to the functionalized spirobenzo[f]indole-cyclohexanes in the absence of indoles by a presumable 5-exo-dig cyclization/Friedel-Crafts alkylation via copper-containing all-carbon 1,4-dipoles.

6.
Nanomicro Lett ; 16(1): 213, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861114

RESUMEN

The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor-semiconductor-metal heterostructure system, Mo-MXene/Mo-metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott-Schottky junctions. By skillfully combining these distinct functional components (Mo-MXene, MoS2, metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces. The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide, which achieved remarkable reflection loss values of - 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.

7.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1762-1773, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812188

RESUMEN

The study aimed to investigate the therapeutic effects of the n-butanol extract of Pulsatilla Decoction(BEPD) on ulcerative colitis(UC) via the bone morphogenetic protein(BMP) signaling pathway. C57BL/6 mice were divided into six groups: control, model, mesalazine, and BEPD low-, medium-, and high-dose groups. Except for the control group, the rest groups were treated with 3% dextran sulfate sodium(DSS) freely for seven consecutive days to establish the UC mouse model, followed by treatment with different concentrations of BEPD and mesalazine by gavage. The murine body weight and disease activity index(DAI) were recorded. After the mice were sacrificed, their colon tissues were collected for histological analysis. Alcian blue/periodic acid-Schiff(AB/PAS) staining was used to detect the number and mucus secretion status of goblet cells; immunohistochemistry was performed to measure the expression of ki67, cleaved caspase-3, mucin 2(Muc2), and matrix metalloproteinase-9(MMP9) in colon tissues; and immunofluorescence was used to analyze the expression of tight junction proteins in colon tissues, and enzyme linked immunosorbent assay(ELISA) was employed to quantify the levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1ß, and IL-6. Western blot was conducted to evaluate the expression of BMP pathway-related proteins in mouse colon tissues. Quantitative real-time PCR(qRT-PCR) was performed to measure the expression of genes related to goblet cell differentiation in mouse colon tissues. In addition, this study also examined the protective effect and underlying mechanism of BEPD-containing serum on lipopolysaccharide(LPS)-induced barrier damages in LS174T goblet cells in vitro. The results showed that BEPD significantly alleviated UC symptoms in mice, restored goblet cell diffe-rentiation function, promoted Muc2 secretion and tight junction protein expression, and suppressed inflammatory factor secretion while activating the BMP signaling pathway. Therefore, BEPD may exert its therapeutic effects on UC by activating the BMP signaling pathway, providing a new strategy for drug intervention in UC.


Asunto(s)
Colitis Ulcerosa , Medicamentos Herbarios Chinos , Ratones Endogámicos C57BL , Pulsatilla , Transducción de Señal , Animales , Transducción de Señal/efectos de los fármacos , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Masculino , Pulsatilla/química , Humanos , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética
8.
BMC Psychol ; 12(1): 310, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812062

RESUMEN

OBJECTIVE: With the increase in the prevalence rate and improvements in the survival of breast cancer patients, there is a growing interest in understanding the level of psychosocial adjustment in these patients. The study aimed to describe the illness perception and psychosocial adjustment levels of both breast cancer patients and their spouses, to use the Actor-Partner Interdependence Model (APIM) to clarify the actor-partner relationships between spouses, and to explore the impact of illness perception on psychosocial adjustment to the disease within the joint actions of both spouses. METHODS: A total of 216 female patients with breast cancer and their spouses participated in the study. They were selected from two tertiary hospitals in Guangdong Province, China from October 2022 to May 2023 using a convenience sampling method. The participants were assessed using the Brief Illness Perception Questionnaire and the Psychosocial Adjustment to Illness Scale to examine the relationship between illness perception and psychosocial adjustment. AMOS24.0 was used to test and analyze the actor-partner interdependence model. RESULTS: The illness perception score (57.75 ± 10.91) was slightly higher than that of the spouse (57.10 ± 11.00), and the psychosocial adjustment score (64.67 ± 6.33) was slightly lower than that of the spouse (64.76 ± 7.49). The results of the actor-partner interdependence model indicated that there was a couple partner between breast cancer patients and their spouses: the spouse's illness perception significantly affected the patient's psychosocial adjustment (ß = 0.095, p = 0.015); the patient's illness perception also significantly affected the spouse's psychosocial adjustment (ß = 0.106, p = 0.033). Among them, the patient's psychosocial adjustment was found to be related to the patient's illness comprehensibility or coherence of illness (ß = 0.433, p = 0.009), the spouse's emotional illness representation (ß = 0.218, p = 0.037), and the spouse's illness comprehensibility or coherence of illness (ß = 0.416, p = 0.007), while the spouse's psychosocial adjustment was only related to the spouse's illness comprehensibility or coherence of illness (ß = 0.528, p = 0.007). CONCLUSIONS: The psychosocial adjustment of breast cancer patients is affected by both their own and spouse's illness perception. Therefore, in the future, the healthcare staff can implement early psychological interventions for patients diagnosed with breast cancer and their spouses as a unit to promote the psychosocial adjustment of them.


Asunto(s)
Adaptación Psicológica , Neoplasias de la Mama , Esposos , Humanos , Femenino , Esposos/psicología , Neoplasias de la Mama/psicología , Persona de Mediana Edad , Adulto , China , Masculino , Anciano , Encuestas y Cuestionarios , Modelos Psicológicos
9.
Aging (Albany NY) ; 16(10): 8630-8644, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38775722

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is often associated with atrial fibrosis and oxidative stress. Neferine, a bisbenzylisoquinoline alkaloid, has been reported to exert an antiarrhythmic effect. However, its impact on Angiotensin II (Ang II) infusion-induced AF and the underlying mechanism remains unclear. This study aimed to investigate whether neferine alleviates Ang II-induced AF and explore the underlying mechanisms. METHODS: Mice subjected to Ang II infusion to induce AF were concurrently treated with neferine or saline. AF incidence, myocardial cell size, fibrosis, and oxidative stress were then examined. RESULTS: Neferine treatment inhibited Ang II-induced AF, atrial size augmentation, and atrial fibrosis. Additionally, we observed that Ang II increased reactive oxygen species (ROS) generation, induced mitochondrial membrane potential depolarization, and reduced glutathione (GSH) and superoxide dismutase (SOD) levels, which were reversed to some extent by neferine. Mechanistically, neferine activated the Nrf2/HO-1 signaling pathway and inhibited TGF-ß/p-Smad2/3 in Ang II-infused atria. Zinc Protoporphyrin (ZnPP), an HO-1 inhibitor, reduced the anti-oxidative effect of neferine to some extent and subsequently abolished the beneficial effect of neferine on Ang II-induced AF. CONCLUSIONS: These findings provide hitherto undocumented evidence that the protective role of neferine in Ang II-induced AF is dependent on HO-1.


Asunto(s)
Angiotensina II , Fibrilación Atrial , Bencilisoquinolinas , Fibrosis , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Proteína smad3 , Factor de Crecimiento Transformador beta , Animales , Angiotensina II/farmacología , Fibrilación Atrial/inducido químicamente , Fibrilación Atrial/metabolismo , Fibrilación Atrial/prevención & control , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Bencilisoquinolinas/farmacología , Transducción de Señal/efectos de los fármacos , Proteína smad3/metabolismo , Masculino , Factor de Crecimiento Transformador beta/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteína Smad2/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Ratones Endogámicos C57BL , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Hemo Oxigenasa (Desciclizante)/metabolismo , Proteínas de la Membrana , Hemo-Oxigenasa 1
10.
Cancer Lett ; 593: 216949, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729558

RESUMEN

Hypomethylating agents (HMAs) are widely employed in the treatment of myeloid malignancies. However, unresponsive or resistant to HMAs occurs in approximately 50 % of patients. ASXL1, one of the most commonly mutated genes across the full spectrum of myeloid malignancies, has been reported to predict a lower overall response rate to HMAs, suggesting an essential need to develop effective therapeutic strategies for the patients with HMA failure. Here, we investigated the impact of ASXL1 on cellular responsiveness to decitabine treatment. ASXL1 deficiency increased resistance to decitabine treatment in AML cell lines and mouse bone marrow cells. Transcriptome sequencing revealed significant alterations in genes regulating cell cycle, apoptosis, and histone modification in ASXL1 deficient cells that resistant to decitabine. BIRC5 was identified as a potential target for overcoming decitabine resistance in ASXL1 deficient cells. Furthermore, our experimental evidence demonstrated that the small-molecule inhibitor of BIRC5 (YM-155) synergistically sensitized ASXL1 deficient cells to decitabine treatment. This study sheds light on the molecular mechanisms underlying the ASXL1-associated HMA resistance and proposes a promising therapeutic strategy for improving treatment outcomes in affected individuals.


Asunto(s)
Decitabina , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Proteínas Represoras , Survivin , Animales , Decitabina/farmacología , Humanos , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Survivin/genética , Survivin/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ratones , Línea Celular Tumoral , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Antimetabolitos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Imidazoles , Naftoquinonas
11.
Ecotoxicol Environ Saf ; 279: 116461, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763051

RESUMEN

Polystyrene nanoplastics (PS-NPs) have been reported to accumulate in the testes and constitute a new threat to reproductive health. However, the exact effects of PS-NPs exposure on testicular cells and the underlying mechanisms remain largely unknown. The C57BL/6 male mice were orally administered with PS-NPs (80 nm) at different dosages (0, 10, and 40 mg/kg/day) for 60 days, and GC-1 cells were treated with PS-NPs in this study. Enlarged seminiferous tubule lumens and a loose and vacuolated layer of spermatogenic cells were observed in PS-NPs-exposed mice. Spermatogenic cells which may be one of the target cells for this reproductive damage, were decreased in the mice from PS-NPs group. PS-NPs caused spermatogenic cells to undergo senescence, manifested as elevated SA-ß-galactosidase activity and activated senescence-related signaling p53-p21/Rb-p16 pathways, and induced cell cycle arrest. Mechanistically, Gene Ontology (GO) enrichment suggested the key role of reactive oxygen species (ROS) in PS-NPs-induced spermatogenic cell senescence, and this result was confirmed by measuring ROS levels. Moreover, ROS inhibition partially attenuated the senescence phenotype of spermatogenic cells and DNA damage. Using the male health atlas (MHA) database, Sirt1 was filtrated as the critical molecule in the regulation of testicular senescence. PS-NPs induced overexpression of the main ROS generator Nox2, downregulated Sirt1, increased p53 and acetylated p53 in vivo and in vitro, whereas these disturbances were partially restored by pterostilbene. In addition, pterostilbene intervention significantly alleviated the PS-NPs-induced spermatogenic cell senescence and attenuated ROS burst. Collectively, our study reveals that PS-NPs exposure can trigger spermatogenic cell senescence mediated by p53-p21/Rb-p16 signaling by regulating the Sirt1/ROS axis. Importantly, pterostilbene intervention may be a promising strategy to alleviate this damage.


Asunto(s)
Senescencia Celular , Ratones Endogámicos C57BL , Poliestirenos , Especies Reactivas de Oxígeno , Sirtuina 1 , Animales , Masculino , Sirtuina 1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Senescencia Celular/efectos de los fármacos , Ratones , Poliestirenos/toxicidad , Testículo/efectos de los fármacos , Testículo/patología , Espermatogénesis/efectos de los fármacos , Nanopartículas/toxicidad , Daño del ADN , Transducción de Señal/efectos de los fármacos
12.
Artículo en Inglés | MEDLINE | ID: mdl-38695864

RESUMEN

A novel actinobacterium, designated strain CWNU-1T, was isolated from the rhizospheric soil of Fritillaria cirrhosa D. Don and examined using a polyphasic taxonomic approach. The organism developed pale blue aerial mycelia that was simply branched and terminated in open or closed coils of three or more volutions on International Streptomyces Project 3 agar. Spores were ellipsoidal to cylindrical with wrinkled surfaces. The strain showed high 16S rRNA gene sequence similarity to Streptomyces kurssanovii NBRC 13192T (98.8 %), Streptomyces xantholiticus NBRC 13354T (98.7 %) and Streptomyces peucetius JCM 9920T (98.6 %). The phylogenetic result based on 16S rRNA gene and genome sequences clearly demonstrated that strain CWNU-1T formed an independent phylogenetic lineage. On the basis of orthologous average nucleotide identity, CWNU-1T was most closely related to Streptomyces inusitatus NBRC 13601T with 79.3 % identity. The results of the digital DNA-DNA hybridization analysis also indicated low levels of relatedness with other species, as the highest value was observed with S. inusitatus NBRC 13601T (25.3 %). With reference to phenotypic characteristics, phylogenetic data, orthologous average nucleotide identity and digital DNA-DNA hybridization results, strain CWNU-1T was readily distinguished from its most closely related strains and classified as representing a novel species, for which the name Streptomyces albipurpureus sp. nov. is proposed. The type strain is CWNU-1T (=CGMCC 4.7758T=MCCC 1K07402T=JCM 35391T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Fritillaria , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Rizosfera , Análisis de Secuencia de ADN , Microbiología del Suelo , Streptomyces , Streptomyces/genética , Streptomyces/clasificación , Streptomyces/aislamiento & purificación , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fritillaria/microbiología , Vitamina K 2/análogos & derivados
13.
Front Mol Biosci ; 11: 1341290, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698772

RESUMEN

Objective: This study aimed to explore the risk factors, metabolic characteristics, and potential biomarkers of mild cognitive impairment in type 2 diabetes mellitus (T2DM-MCI) and to provide potential evidence for the diagnosis, prevention, and treatment of mild cognitive impairment (MCI) in patients with type 2 diabetes mellitus (T2DM). Methods: A total of 103 patients with T2DM were recruited from the Endocrinology Department of The Second Affiliated Hospital of Dalian Medical University for inclusion in the study. The Montreal Cognitive Assessment (MoCA) was utilized to evaluate the cognitive functioning of all patients. Among them, 50 patients were categorized into the T2DM-MCI group (MoCA score < 26 points), while 53 subjects were classified into the T2DM without cognitive impairment (T2DM-NCI) group (MoCA score ≥ 26 points). Serum samples were collected from the subjects, and metabolomics profiling data were generated by Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). These groups were analyzed to investigate the differences in expression of small molecule metabolites, metabolic pathways, and potential specific biomarkers. Results: Comparison between the T2DM-MCI group and T2DM-NCI group revealed significant differences in years of education, history of insulin application, insulin resistance index, insulin-like growth factor-binding protein-3 (IGFBP-3), and creatinine levels. Further binary logistic regression analysis of the variables indicated that low educational level and low serum IGFBP-3 were independent risk factor for T2DM-MCI. Metabolomics analysis revealed that differential expression of 10 metabolites between the T2DM-MCI group and T2DM-NCI group (p < 0.05 and FDR<0.05, VIP>1.5). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analysis revealed that fatty acid degradation was the most significant pathway. Receiver operating characteristic (ROC) analysis shows that lysophosphatidylcholine (LPC) 18:0 exhibited greater diagnostic efficiency. Conclusion: This study revealed that a shorter duration of education and lower serum IGFBP-3 levels are independent risk factors for T2DM-MCI. Serum metabolites were found to be altered in both T2DM-MCI and T2DM-NCI groups. T2DM patients with or without MCI can be distinguished by LPC 18:0. Abnormal lipid metabolism plays a significant role in the development of MCI in T2DM patients.

14.
Surgery ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38762380

RESUMEN

BACKGROUND: Sepsis, characterized by dysregulated host responses to infection, remains a critical global health concern, with high morbidity and mortality rates. The gastrointestinal tract assumes a pivotal role in sepsis due to its dual functionality as a protective barrier against injurious agents and as a regulator of motility. Dexmedetomidine, an α2-adrenergic agonist commonly employed in critical care settings, exhibits promise in influencing the maintenance of intestinal barrier integrity during sepsis. However, its impact on intestinal motility, a crucial component of intestinal function, remains incompletely understood. METHODS: In this study, we investigated dexmedetomidine's multifaceted effects on intestinal barrier function and motility during sepsis using both in vitro and in vivo models. Sepsis was induced in Sprague-Dawley rats via cecal ligation and puncture. Rats were treated with dexmedetomidine post-cecal ligation and puncture, and various parameters were assessed to elucidate dexmedetomidine's impact. RESULTS: Our findings revealed a dichotomous influence of dexmedetomidine on intestinal physiology. In septic rats, dexmedetomidine administration resulted in improved intestinal barrier integrity, as evidenced by reduced mucosal hyper-permeability and morphological alterations. However, a contrasting effect was observed on intestinal motility, as dexmedetomidine treatment inhibited both the frequency and amplitude of contractions in isolated intestinal strips and decreased the distance of ink migration in vivo. Additionally, dexmedetomidine suppressed the secretion of pro-motility hormones while having no influence on hormones that inhibit intestinal peristalsis. CONCLUSION: The study revealed that during sepsis, dexmedetomidine exhibited protective effects on barrier integrity, although concurrently it hindered intestinal motility, partly attributed to its modulation of pro-motility hormone secretion. These findings underscore the necessity of a comprehensive understanding of dexmedetomidine's impact on multiple facets of gastrointestinal physiology in sepsis management, offering potential implications for therapeutic strategies and patient care.

16.
Synth Syst Biotechnol ; 9(3): 586-593, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38720820

RESUMEN

Halomonas bluephagenesis TD serves as an exceptional chassis for next generation industrial biotechnology to produce various products. However, the simultaneous editing of multiple loci in H. bluephagenesis TD remains a significant challenge. Herein, we report the development of a multiple loci genome editing system, named CRISPR-deaminase-assisted base editor (CRISPR-BE) in H. bluephagenesis TD. This system comprises two components: a cytidine (CRISPR-cBE) and an adenosine (CRISPR-aBE) deaminase-based base editor. CRISPR-cBE can introduce a cytidine to thymidine mutation with an efficiency of up to 100 % within a 7-nt editing window in H. bluephagenesis TD. Similarly, CRISPR-aBE demonstrates an efficiency of up to 100 % in converting adenosine to guanosine mutation within a 7-nt editing window. CRISPR-cBE has been further validated and successfully employed for simultaneous multiplexed editing in H. bluephagenesis TD. Our findings reveal that CRISPR-cBE efficiently inactivated all six copies of the IS1086 gene simultaneously by introducing stop codon. This system achieved an editing efficiency of 100 % and 41.67 % in inactivating two genes and three genes, respectively. By substituting the Pcas promoter with the inducible promoter PMmp1, we optimized CRISPR-cBE system and ultimately achieved 100 % editing efficiency in inactivating three genes. In conclusion, our research offers a robust and efficient method for concurrently modifying multiple loci in H. bluephagenesis TD, opening up vast possibilities for industrial applications in the future.

17.
Chem Sci ; 15(18): 6891-6896, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725498

RESUMEN

Birefringent materials are of great significance to the development of modern optical technology; however, research on halide birefringent crystals with a wide transparent range remains limited. In this work, mercuric bromide (HgBr2) has been investigated for the first time as a promising birefringent material with a wide transparent window spanning from ultraviolet (UV) to far-infrared (far-IR) spectral regions (0.34-22.9 µm). HgBr2 has an exceptionally large birefringence (Δn, 0.235 @ 546 nm), which is 19.6 times that of commercial MgF2. The ordered linear motif [Br-Hg-Br] with high polarizability anisotropy within the molecule is the inherent source of excellent birefringence, making it an efficient building block for birefringent materials. In addition, HgBr2 can be easily grown under mild conditions and remain stable in air for prolonged periods. Studying the birefringent properties of HgBr2 crystals would provide new ideas for future exploration of wide-spectrum birefringent materials.

18.
Acta Pharmacol Sin ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750074

RESUMEN

Hypoxia-ischemia (HI) is one of the main causes of neonatal brain injury. Mitophagy has been implicated in the degradation of damaged mitochondria and cell survival following neonatal brain HI injury. Pleckstrin homology-like domain family A member 1 (PHLDA1) plays vital roles in the progression of various disorders including the regulation of oxidative stress, the immune responses and apoptosis. In the present study we investigated the role of PHLDA1 in HI-induced neuronal injury and further explored the mechanisms underlying PHLDA1-regulated mitophagy in vivo and in vitro. HI model was established in newborn rats by ligation of the left common carotid artery plus exposure to an oxygen-deficient chamber with 8% O2 and 92% N2. In vitro studies were conducted in primary hippocampal neurons subjected to oxygen and glucose deprivation/-reoxygenation (OGD/R). We showed that the expression of PHLDA1 was significantly upregulated in the hippocampus of HI newborn rats and in OGD/R-treated primary neurons. Knockdown of PHLDA1 in neonatal rats via lentiviral vector not only significantly ameliorated HI-induced hippocampal neuronal injury but also markedly improved long-term cognitive function outcomes, whereas overexpression of PHLDA1 in neonatal rats via lentiviral vector aggravated these outcomes. PHLDA1 knockdown in primary neurons significantly reversed the reduction of cell viability and increase in intracellular reactive oxygen species (ROS) levels, and attenuated OGD-induced mitochondrial dysfunction, whereas overexpression of PHLDA1 decreased these parameters. In OGD/R-treated primary hippocampal neurons, we revealed that PHLDA1 knockdown enhanced mitophagy by activating FUNDC1, which was abolished by FUNDC1 knockdown or pretreatment with mitophagy inhibitor Mdivi-1 (25 µM). Notably, pretreatment with Mdivi-1 or the knockdown of FUNDC1 not only increased brain infarct volume, but also abolished the neuroprotective effect of PHLDA1 knockdown in HI newborn rats. Together, these results demonstrate that PHLDA1 contributes to neonatal HI-induced brain injury via inhibition of FUNDC1-mediated neuronal mitophagy.

19.
Foods ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731757

RESUMEN

The traditional fermentation process of soy sauce employs a hyperhaline model and has a long fermentation period. A hyperhaline model can improve fermentation speed, but easily leads to the contamination of miscellaneous bacteria and fermentation failure. In this study, after the conventional koji and moromi fermentation, the fermentation broth was pasteurized and diluted, and then inoculated with three selected microorganisms including Corynebacterium glutamicum, Corynebacterium ammoniagenes, and Lactiplantibacillus plantarum for secondary fermentation. During this ten-day fermentation, the pH, free amino acids, organic acids, nucleotide acids, fatty acids, and volatile compounds were analyzed. The fermentation group inoculated with C. glutamicum accumulated the high content of amino acid nitrogen of 0.92 g/100 mL and glutamic acid of 509.4 mg/100 mL. The C. ammoniagenes group and L. plantarum group were rich in nucleotide and organic acid, respectively. The fermentation group inoculated with three microorganisms exhibited the best sensory attributes, showing the potential to develop a suitable fermentation method. The brewing speed of the proposed process in this study was faster than that of the traditional method, and the umami substances could be significantly accumulated in this low-salt fermented model (7% w/v NaCl). This study provides a reference for the low-salt and rapid fermentation of seasoning.

20.
Fitoterapia ; 176: 106005, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38744383

RESUMEN

Mogrol, the aglycone of well-known sweeter mogrosides, shows potent anti-inflammatory activity. In this study, forty-two mogrol derivatives bearing various pharmacophores with oxygen or nitrogen atoms were designed and synthesized via structural modification at C24 site, and their anti-inflammatory activity were screened against lipopolysaccharide (LPS)-induced RAW264.7 cells. Compared with mogrol, most of derivatives exhibited stronger inhibition of NO production without cytotoxicity. In particular, compound B5 that contained an indole motif effectively suppressed the secretion of inflammatory mediators including TNF-α and IL-6, and inhibited the expression levels of TLR4, p-p65 and iNOS proteins. Molecular docking showed that the active B5 interacted with amino acid residues of iNOS protein through π-π stacking and hydrophobic interactions with binding affinity value of -12.1 kcal/mol, which was much stronger than mogrol (-8.9 kcal/mol). These results suggest that derivative B5 is a promising anti-inflammatory molecule and the strategy of hybridizing indole skeleton on mogrol is worthy for further attention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...