Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Child Adolesc Psychiatry ; 33(2): 369-380, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36800038

RESUMEN

Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) are two highly prevalent and commonly co-occurring neurodevelopmental disorders. The neural mechanisms underpinning the comorbidity of ASD and ADHD (ASD + ADHD) remain unclear. We focused on the topological organization and functional connectivity of brain networks in ASD + ADHD patients versus ASD patients without ADHD (ASD-only). Resting-state functional magnetic resonance imaging (rs-fMRI) data from 114 ASD and 161 typically developing (TD) individuals were obtained from the Autism Brain Imaging Data Exchange II. The ASD patients comprised 40 ASD + ADHD and 74 ASD-only individuals. We constructed functional brain networks for each group and performed graph-theory and network-based statistic (NBS) analyses. Group differences between ASD + ADHD and ASD-only were analyzed at three levels: nodal, global, and connectivity. At the nodal level, ASD + ADHD exhibited topological disorganization in the temporal and occipital regions, compared with ASD-only. At the global level, ASD + ADHD and ASD-only displayed no significant differences. At the connectivity level, the NBS analysis revealed that ASD + ADHD showed enhanced functional connectivity between the prefrontal and frontoparietal regions, as well as between the orbitofrontal and occipital regions, compared with ASD-only. The hippocampus was the shared region in aberrant functional connectivity patterns in ASD + ADHD and ASD-only compared with TD. These findings suggests that ASD + ADHD displays altered topology and functional connectivity in the brain regions that undertake social cognition, language processing, and sensory processing.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/complicaciones , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico
2.
Zhen Ci Yan Jiu ; 48(12): 1227-1235, 2023 Dec 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38146245

RESUMEN

OBJECTIVES: To investigate the effects on the motor function, cortex blood flow perfusion, microglial cells, and the contents of serum inflammatory factors, i.e. interleukin-1ß (IL-1ß), transforming growth factor-ß (TGF-ß), and interleukin-10 (IL-10) after electroacupuncture (EA) preconditioning at "Baihui" (GV20) and "Dazhui" (GV14) in the mice with ischemic stroke, so as to explore the mechanism of EA preconditioning for improving motor function after ischemic stroke. METHODS: C57BL/6 mice were randomly divided into sham-operation group, model group, and EA preconditioning group (EA group), with 15 mice in each group. A photothrombotic method was used to induce the model of unilateral ischemic stroke and motor impairment. The mice in the EA group received EA preconditioning, 20 min each time, once daily for 7 consecutive days before modeling. The motor function of mice was evaluated by the grid-walking test and cylinder test before and after modeling. Laser speckle blood flow video monitoring system was employed to assess the cerebral blood flow perfusion in the primary motor cortex of mice. The contents of IL-1ß, TGF-ß, and IL-10 in the serum were measured by ELISA, and the expressions of microglial cell and M2 subtype cell marker in the primary motor cortex were detected using immunofluorescence staining. RESULTS: After modeling, compared with the sham-operation group, the grid error rate and the dragging rate of the affected limb were increased (P<0.01);the utilization rate of the affected limb and percentage of the blood perfusion in the affected cortex to healthy side were decreased (P<0.01);the contents of serum IL-1ß, TGF-ß, and IL-10 were increased (P<0.01, P<0.05);and the microglia in the primary motor cortex on the affected side showed ameboid, the fluorescence intensity of ionized calcium-binding adapter molecule 1 (IBA1) and CD206 was increased (P<0.01) in the model group. In the EA group, when compared with the model group, the grid error rate and the dragging rate of affected limb were decreased (P<0.01);the utilization rate of affected limb and the percentage of blood perfusion were increased (P<0.05);the content of serum IL-1ß was decreased (P<0.01), while the contents of TGF-ß and IL-10 were increased (P<0.01);and the microglia in the primary motor cortex on the affected side got more round and were distributed more densely, the fluorescence intensity of IBA1 and CD206 was increased (P<0.01). CONCLUSIONS: Electroacupuncture preconditioning at "GV20" and "GV14" can up-regulate the expression of microglial cells, especially the M2 subtype cell marker, and increase the contents of the anti-inflammatory factors and decrease that of the pro-inflammatory factors in the serum, thereby alleviate the inflammatory reaction.


Asunto(s)
Electroacupuntura , Accidente Cerebrovascular Isquémico , Ratones , Animales , Microglía , Interleucina-10/genética , Electroacupuntura/métodos , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta
3.
Sci Rep ; 13(1): 9604, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311825

RESUMEN

Transcutaneous auricular vagus nerve stimulation (taVNS) shows excellent effects on relieving clinical symptoms in migraine patients. Nevertheless, the neurological mechanisms of taVNS for migraineurs remain unclear. In recent years, voxel-wise degree centrality (DC) and functional connectivity (FC) methods were extensively utilized for exploring alterations in patterns of FC in the resting-state brain. In the present study, thirty-five migraine patients without aura and thirty-eight healthy controls (HCs) were recruited for magnetic resonance imaging scans. Firstly, this study used voxel-wise DC analysis to explore brain regions where abnormalities were present in migraine patients. Secondly, for elucidating neurological mechanisms underlying taVNS in migraine, seed-based resting-state functional connectivity analysis was employed to the taVNS treatment group. Finally, correlation analysis was performed to explore the relationship between alterations in neurological mechanisms and clinical symptoms. Our findings indicated that migraineurs have lower DC values in the inferior temporal gyrus (ITG) and paracentral lobule than in healthy controls (HCs). In addition, migraineurs have higher DC values in the cerebellar lobule VIII and the fusiform gyrus than HCs. Moreover, after taVNS treatment (post-taVNS), patients displayed increased FC between the ITG with the inferior parietal lobule (IPL), orbitofrontal gyrus, angular gyrus, and posterior cingulate gyrus than before taVNS treatment (pre-taVNS). Besides, the post-taVNS patients showed decreased FC between the cerebellar lobule VIII with the supplementary motor area and postcentral gyrus compared with the pre-taVNS patients. The changed FC of ITG-IPL was significantly related to changes in headache intensity. Our study suggested that migraine patients without aura have altered brain connectivity patterns in several hub regions involving multisensory integration, pain perception, and cognitive function. More importantly, taVNS modulated the default mode network and the vestibular cortical network related to the dysfunctions in migraineurs. This paper provides a new perspective on the potential neurological mechanisms and therapeutic targets of taVNS for treating migraine.


Asunto(s)
Epilepsia , Migraña sin Aura , Estimulación del Nervio Vago , Humanos , Migraña sin Aura/diagnóstico por imagen , Migraña sin Aura/terapia , Encéfalo/diagnóstico por imagen , Cefalea
4.
Hum Brain Mapp ; 43(16): 4864-4885, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35906880

RESUMEN

The dual-process theory that two different systems of thought coexist in creative thinking has attracted considerable attention. In the field of creative thinking, divergent thinking (DT) is the ability to produce multiple solutions to open-ended problems in a short time. It is mainly considered an associative and fast process. Meanwhile, insight, the new and unexpected comprehension of close-ended problems, is frequently marked as a deliberate and time-consuming thinking process requiring concentrated effort. Previous research has been dedicated to revealing their separate neural mechanisms, while few studies have compared their differences and similarities at the brain level. Therefore, the current study applied Activation Likelihood Estimation to decipher common and distinctive neural pathways that potentially underlie DT and insight. We selected 27 DT studies and 30 insight studies for retrospective meta-analyses. Initially, two single analyses with follow-up contrast and conjunction analyses were performed. The single analyses showed that DT mainly involved the inferior parietal lobe (IPL), cuneus, and middle frontal gyrus (MFG), while the precentral gyrus, inferior frontal gyrus (IFG), parahippocampal gyrus (PG), amygdala (AMG), and superior parietal lobe were engaged in insight. Compared to insight, DT mainly led to greater activation in the IPL, the crucial part of the default mode network. However, insight caused more significant activation in regions related to executive control functions and emotional responses, such as the IFG, MFG, PG, and AMG. Notably, the conjunction analysis detected no overlapped areas between DT and insight. These neural findings implicate that various neurocognitive circuits may support DT and insight.


Asunto(s)
Creatividad , Imagen por Resonancia Magnética , Humanos , Funciones de Verosimilitud , Estudios Retrospectivos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico
5.
Front Psychiatry ; 13: 825198, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35599766

RESUMEN

Background: Childhood maltreatment is known as a significant risk factor for later depression. However, there remains a lack of understanding about the mechanisms through which childhood maltreatment confers risk for depression. This study explores how Qi-stagnation constitution (QSC) and emotion regulation affect the link between childhood maltreatment and depressive symptoms in Chinese college students. Methods: We recruited 2,108 college students aged 18-25 years between November 2020 and December 2021. Participants were required to complete four self-report questionnaires, including the Childhood Trauma Questionnaire-Short Form (CTQ-SF), Qi-Stagnation Constitution (QSC) subscale of the simplified Chinese Medicine Constitution Questionnaire, Difficulties in Emotion Regulation Scale (DERS), and the Beck Depression Inventory-II (BDI-II). Moderated mediation analyses were conducted. Results: There was a positive correlation between childhood maltreatment and QSC, while the QSC partially mediated the effect of childhood maltreatment on depressive scores in college students. In addition, emotion dysregulation moderated the association between QSC and depressive scores. Conclusion: These results enhance understanding of key factors influencing the link between childhood maltreatment and depressive symptoms among college students by combining the theory of TCM constitution with psychological processes. The development of strategies to prevent biased Qi-stagnation constitution and emotion dysregulation may help to improve college students' mental health and strengthen the resilience of individuals to depression.

6.
Front Hum Neurosci ; 15: 625888, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867956

RESUMEN

Cognitive and neural processes underlying visual creativity have attracted substantial attention. The current research uses a critical time point analysis (CTPA) to examine how spontaneous activity in the primary visual area (PVA) is related to visual creativity. We acquired the functional magnetic resonance imaging (fMRI) data of 16 participants at the resting state and during performing a visual creative synthesis task. According to the CTPA, we then classified spontaneous activity in the PVA into critical time points (CTPs), which reflect the most useful and important functional meaning of the entire resting-state condition, and the remaining time points (RTPs). We constructed functional brain networks based on the brain activity at two different time points and then subsequently based on the brain activity at the task state in a separate manner. We explore the relationship between resting-state and task-fMRI (T-fMRI) functional brain networks. Our results found that: (1) the pattern of spontaneous activity in the PVA may associate with mental imagery, which plays an important role in visual creativity; (2) in comparison with the RTPs-based brain network, the CTP-network showed an increase in global efficiency and a decrease in local efficiency; (3) the regional integrated properties of the CTP-network could predict the integrated properties of the creative-network while the RTP-network could not. Thus, our findings indicated that spontaneous activity in the PVA at CTPs was associated with a visual creative task-evoked brain response. Our findings may provide an insight into how the visual cortex is related to visual creativity.

7.
Brain Imaging Behav ; 15(4): 1944-1954, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32990895

RESUMEN

Creativity relies on the reorganizing of multimodal information and flexible switching between different modes of thinking, suggesting an association between creativity and the reconfiguration of functional brain networks. Here, we investigated global and regional brain dynamics in high-creative (HCG, N = 22) and a low-creative (LCG, N = 20) groups during a divergent creative thinking task. We found that during the creative thinking task, the HCG demonstrated higher global network flexibility, as compared to the LCG. In addition, creative thinking in the HCG was associated with significantly higher regional flexibility in the medial superior temporal gyrus, superior parietal lobule, precuneus, nucleus accumbens, and the ventral inferior frontal gyrus. Interestingly, the LCG demonstrated decreased regional flexibility in the medial superior temporal gyrus, superior parietal lobule, and the ventral inferior frontal gyrus. We also found that the changes in global and regional flexibility in the creative compared with the control tasks were good features allowing for distinguishing between the HCG and the LCG. Taken together, these findings provide evidence that divergent creative thinking is associated with flexible reconfiguration of brain networks involved in verbal, working memory, and reward processing.


Asunto(s)
Creatividad , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Lóbulo Parietal
8.
Neurotoxicology ; 83: 40-50, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359004

RESUMEN

Lanthanum is a rare-earth element that has been used in various fields including medicine, agriculture and industry. Previously, in utero lanthanum exposure to dams was shown to alter neurobehavior and neurotransmitter levels in rat offspring; however, the effects of postweaning exposure to lanthanum on neurological behavior is still limited. The purpose of this study was to investigate the effects of postweaning exposure to lanthanum on neurological behavior during early adulthood in rats. Rats were orally exposed to 0, 2, 20, 60 mg/kg BW of lanthanum nitrate from postnatal day (PND) 24 to PND60. Our results indicated that lanthanum treatment significantly decreased body weight and food intake. Morris water maze test results showed that lanthanum significantly decreased escape latency and travel distance. Lanthanum treatment also significantly decreased grip strength, hindlimb strength, and running time & distance in motor activity test. Further results showed that lanthanum treatment significantly decreased plasma neurotransmitter levels of acetylcholine and norepinephrine as well as the number of neurons in the CA1 area of the hippocampus. These results suggest that postweaning exposure to lanthanum have adverse effects on neurobehaviors and the central nervous system, with no-observed-adverse-effect level at 2 mg/kg BW and benchmark dose lower confidence limit at 1.7 mg/kg BW.


Asunto(s)
Conducta Animal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Lantano/toxicidad , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Acetilcolina/metabolismo , Animales , Ingestión de Alimentos/efectos de los fármacos , Reacción de Fuga/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Masculino , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Síndromes de Neurotoxicidad/fisiopatología , Norepinefrina/metabolismo , Destete , Aumento de Peso/efectos de los fármacos
9.
Brain Connect ; 9(2): 221-230, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30560680

RESUMEN

Brain neocortex is usually dominated by visual input (with eyes open [EO]), whereas this visual predominance could be reduced by closing eyes. Cutting off visual input from the eyes (with eyes closed [EC]) would also benefit other sensory performance; however, the neural basis underlying the state-switching remains unclear. In this study, we investigated the brain intrinsic activity of either the EO or EC states by using the resting-state functional magnetic resonance imaging data from 22 healthy participants. The 10 resting-state networks (RSNs) of these participants were explored by the independent component analysis method. Within each RSN, various network parameters (i.e., the amplitude of low-frequency fluctuation, the voxel-wise weighted degree centrality, and the RSN-wise functional connectivity) were measured to depict the brain intrinsic activity properties underlying the EO and EC states. Taking these brain intrinsic activity properties as discriminative features in a linear classifier, we found that the EO and EC states could be effectively classified using the intrinsic properties of the sensory dominance networks and the salience network (SN). Further analysis showed that the brain intrinsic activity within the sensory dominance networks was constantly overwhelmed during the EC state relative to that in the EO state. The SN might play a key role as a switcher between state-switching. Therefore, this study indicated that the brain intrinsic activity in the sensory dominance networks would be enhanced with EC, which might improve other sensory-relative task performance.


Asunto(s)
Mapeo Encefálico/métodos , Visión Ocular/fisiología , Percepción Visual/fisiología , Encéfalo/fisiología , Análisis Discriminante , Ojo/diagnóstico por imagen , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Fenómenos Fisiológicos Oculares , Descanso , Adulto Joven
10.
Brain Imaging Behav ; 12(1): 258-273, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28271439

RESUMEN

Visual creative imagery (VCI) manipulation is the key component of visual creativity; however, it remains largely unclear how it occurs in the brain. The present study investigated the brain neural response to VCI manipulation and its relation to intrinsic brain activity. We collected functional magnetic resonance imaging (fMRI) datasets related to a VCI task and a control task as well as pre- and post-task resting states in sequential sessions. A general linear model (GLM) was subsequently used to assess the specific activation of the VCI task compared with the control task. The changes in brain oscillation amplitudes across the pre-, on-, and post-task states were measured to investigate the modulation of the VCI task. Furthermore, we applied a Granger causal analysis (GCA) to demonstrate the dynamic neural interactions that underlie the modulation effect. We determined that the VCI task specifically activated the left inferior frontal gyrus pars triangularis (IFGtriang) and the right superior frontal gyrus (SFG), as well as the temporoparietal areas, including the left inferior temporal gyrus, right precuneus, and bilateral superior parietal gyrus. Furthermore, the VCI task modulated the intrinsic brain activity of the right IFGtriang (0.01-0.08 Hz) and the left caudate nucleus (0.2-0.25 Hz). Importantly, an inhibitory effect (negative) may exist from the left SFG to the right IFGtriang in the on-VCI task state, in the frequency of 0.01-0.08 Hz, whereas this effect shifted to an excitatory effect (positive) in the subsequent post-task resting state. Taken together, the present findings provide experimental evidence for the existence of a common mechanism that governs the brain activity of many regions at resting state and whose neural activity may engage during the VCI manipulation task, which may facilitate an understanding of the neural substrate of visual creativity.


Asunto(s)
Encéfalo/fisiología , Creatividad , Imaginación/fisiología , Percepción Visual/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Femenino , Humanos , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Pruebas Neuropsicológicas , Descanso , Adulto Joven
11.
Biol Psychol ; 129: 165-177, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28890001

RESUMEN

Previous studies have indicated a tight linkage between resting-state functional connectivity of the human brain and creative ability. This study aimed to further investigate the association between the topological organization of resting-state brain networks and creativity. Therefore, we acquired resting-state fMRI data from 22 high-creativity participants and 22 low-creativity participants (as determined by their Torrance Tests of Creative Thinking scores). We then constructed functional brain networks for each participant and assessed group differences in network topological properties before exploring the relationships between respective network topological properties and creative ability. We identified an optimized organization of intrinsic brain networks in both groups. However, compared with low-creativity participants, high-creativity participants exhibited increased global efficiency and substantially decreased path length, suggesting increased efficiency of information transmission across brain networks in creative individuals. Using a multiple linear regression model, we further demonstrated that regional functional integration properties (i.e., the betweenness centrality and global efficiency) of brain networks, particularly the default mode network (DMN) and sensorimotor network (SMN), significantly predicted the individual differences in creative ability. Furthermore, the associations between network regional properties and creative performance were creativity-level dependent, where the difference in the resource control component may be important in explaining individual difference in creative performance. These findings provide novel insights into the neural substrate of creativity and may facilitate objective identification of creative ability.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Creatividad , Imagen por Resonancia Magnética/métodos , Descanso/fisiología , Adolescente , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Individualidad , Modelos Lineales , Masculino , Adulto Joven
12.
Brain Connect ; 7(9): 590-601, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28950708

RESUMEN

The present study aimed to explore the association between resting-state functional connectivity and creativity ability. Toward this end, the figural Torrance Tests of Creative Thinking (TTCT) scores were collected from 180 participants. Based on the figural TTCT measures, we collected resting-state functional magnetic resonance imaging data for participants with two different levels of creativity ability (a high-creativity group [HG, n = 22] and a low-creativity group [LG, n = 20]). For the aspect of group difference, this study combined voxel-wise functional connectivity strength (FCS) and seed-based functional connectivity to identify brain regions with group-change functional connectivity. Furthermore, the connectome properties of the identified regions and their associations with creativity were investigated using the permutation test, discriminative analysis, and brain-behavior correlation analysis. The results indicated that there were 4 regions with group differences in FCS, and these regions were linked to 30 other regions, demonstrating different functional connectivity between the groups. Together, these regions form a creativity-related network, and we observed higher network efficiency in the HG compared with the LG. The regions involved in the creativity network were widely distributed across the modality-specific/supramodality cerebral cortex, subcortex, and cerebellum. Notably, properties of regions in the supramodality networks (i.e., the default mode network and attention network) carried creativity-level discriminative information and were significantly correlated with the creativity performance. Together, these findings demonstrate a link between intrinsic brain connectivity and creative ability, which should provide new insights into the neural basis of creativity.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conectoma , Creatividad , Vías Nerviosas/diagnóstico por imagen , Adolescente , Análisis Discriminante , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Oxígeno/sangre , Curva ROC , Adulto Joven
13.
Sci Rep ; 7: 46072, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28383052

RESUMEN

Creativity is thought to require the flexible reconfiguration of multiple brain regions that interact in transient and complex communication patterns. In contrast to prior emphases on searching for specific regions or networks associated with creative performance, we focused on exploring the association between the reconfiguration of dynamic functional connectivity states and creative ability. We hypothesized that a high frequency of dynamic functional connectivity state transitions will be associated with creative ability. To test this hypothesis, we recruited a high-creative group (HCG) and a low-creative group (LCG) of participants and collected resting-state fMRI (R-fMRI) data and Torrance Tests of Creative Thinking (TTCT) scores from each participant. By combining an independent component analysis with a dynamic network analysis approach, we discovered the HCG had more frequent transitions between dynamic functional connectivity (dFC) states than the LCG. Moreover, a confirmatory analysis using multiplication of temporal derivatives also indicated that there were more frequent dFC state transitions in the HCG. Taken together, these results provided empirical evidence for a linkage between the flexible reconfiguration of dynamic functional connectivity states and creative ability. These findings have the potential to provide new insights into the neural basis of creativity.


Asunto(s)
Encéfalo/fisiología , Creatividad , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología , Adolescente , Femenino , Humanos , Pruebas de Inteligencia , Masculino , Factores de Tiempo
14.
Behav Brain Res ; 320: 233-243, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011171

RESUMEN

Neuroimaging studies have highlighted that intrinsic brain activity is modified to implement task demands. However, the relation between mental rotation and intrinsic brain activity remains unclear. To answer this question, we collected functional MRI (fMRI) data from 30 healthy participants in two mental rotation task periods (1st-task state, 2nd-task state) and two rest periods before (pre-task resting state) and after the task (post-task resting state) respectively. By combining the spatial independent component analysis (ICA) and voxel-wise functional connectivity strength (FCS), we identified FCS maps of 10 brain resting state networks (RSNs) within six different bands (i.e., 0-0.05, 0.05-0.1, 0.1-0.15, 0.15-0.2, 0.2-0.25, and 0.01-0.08Hz) corresponding to the four states for each subject. The maximum uncertainty linear discriminant analysis (MLDA) method showed that the FCS within the low frequency bandwidth of 0.05-0.1Hz could effectively classify the mental rotation task state from pre-/post-task resting states but failed to discriminate the pre- and post-task resting states. Discriminative FCSs were observed in the cognitive executive-control network (central executive and attention) and the imagery-based internal mental manipulation network (default mode, primary sensorimotor, and primary visual). Imagery manipulation is a stable mental element of mental rotation, and the involvement of executive control is dependent on the degree of task familiarity. Together, the present study provides evidence that mental rotation task specifically modifies intrinsic brain activity to complement cognitive demands, which provides further insight into the neural basis of mental rotation manipulation.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Procesos Mentales/fisiología , Vías Nerviosas/diagnóstico por imagen , Rotación , Adulto , Atención/fisiología , Análisis Discriminante , Función Ejecutiva/fisiología , Femenino , Voluntarios Sanos , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Oxígeno/sangre , Tiempo de Reacción/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...