Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 216: 118281, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35316680

RESUMEN

Carboxyl-rich alicyclic molecules (CRAMs) widely exist in the ocean and constitute the central part of the refractory dissolved organic matter (RDOM) pool. Although a consensus has been reached that microbial activity forms CRAMs, the detailed molecular mechanisms remain largely unexplored. To better understand the underlying genetic mechanisms driving the microbial transformation of CRAM, a long-term macrocosm experiment spanning 220 days was conducted in the Aquatron Tower Tank at Dalhousie University, Halifax, Canada, with the supply of diatom-derived DOM as a carbon source. The DOM composition, community structure, and metabolic pathways were characterised using multi-omics approaches. The addition of diatom lysate introduced a mass of labile DOM into the incubation seawater, which led to a low degradation index (IDEG) and refractory molecular lability boundary (RMLB) on days 1 and 18. The molecular compositions of the DOM molecules in the later incubation period (from day 120 to day 220) were more similar in composition to those on day 0, suggesting a rapid turnover of phytoplankton debris by microbial communities. Taxonomically, while Alpha proteobacteria dominated during the entire incubation period, Gamma proteobacteria became more sensitive and abundant than the other bacterial groups on days 1 and 18. Recalcitrant measurements such as IDEG and RMLB were closely related to the DOM molecules, bacterial community, and Kyoto encyclopaedia of Genes and Genomes (KEGG) modules, suggesting close associations between RDOM accumulation and microbial metabolism. KEGG modules that showed strong positive correlation with CRAMs were identified using a microbial ecological network approach. The identified KEGG modules produced the substrates, such as the acetyl-CoA or 3­hydroxy-3-methylglutaryl-CoA, which could participate in the mevalonate pathway to generate the precursor of CRAM analogues, isopentenyl-PP, suggesting a potential generation pathway of CRAM analogues in bacteria and archaea. This study revealed the potential genetic and molecular processes involved in the microbial origin of CRAM analogues, and thus indicated a vital ecological role of bacteria and archaea in RDOM production. This study also offered new perspectives on the carbon sequestration in the ocean.


Asunto(s)
Diatomeas , Microbiota , Bacterias/genética , Bacterias/metabolismo , Diatomeas/genética , Materia Orgánica Disuelta , Humanos , Metagenoma , Metagenómica , Fitoplancton/genética , Fitoplancton/metabolismo
2.
Sci Adv ; 7(16)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33853769

RESUMEN

Microbial degradation of dissolved organic carbon (DOC) in aquatic environments can cause oxygen depletion, water acidification, and CO2 emissions. These problems are caused by labile DOC (LDOC) and not refractory DOC (RDOC) that resists degradation and is thus a carbon sink. For nearly a century, chemical oxygen demand (COD) has been widely used for assessment of organic pollution in aquatic systems. Here, we show through a multicountry survey and experimental studies that COD is not an appropriate proxy of microbial degradability of organic matter because it oxidizes both LDOC and RDOC, and the latter contributes up to 90% of DOC in high-latitude forested areas. Hence, COD measurements do not provide appropriate scientific information on organic pollution in natural waters and can mislead environmental policies. We propose the replacement of the COD method with an optode-based biological oxygen demand method to accurately and efficiently assess organic pollution in natural aquatic environments.

4.
Natl Sci Rev ; 6(4): 825-838, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34691936

RESUMEN

The Ulva prolifera green tides in the Yellow Sea, China, which have been occurring since 2007, are a serious environmental problem attracting worldwide attention. Despite extensive research, the outbreak mechanisms have not been fully understood. Comprehensive analysis of anthropogenic and natural biotic and abiotic factors reveals that human activities, regional physicochemical conditions and algal physiological characteristics as well as ocean warming and biological interactions (with microorganism or other macroalgae) are closely related to the occurrence of green tides. Dynamics of these factors and their interactions could explain why green tides suddenly occurred in 2007 and decreased abruptly in 2017. Moreover, the consequence of green tides is serious. The decay of macroalgal biomass could result in hypoxia and acidification, possibly induce red tide and even have a long-lasting impact on coastal carbon cycles and the ecosystem. Accordingly, corresponding countermeasures have been proposed in our study for future reference in ecosystem management strategies and sustainable development policy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA