Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 950: 175305, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117200

RESUMEN

Urban activity emissions have important ecological significance to bacterial communities' spatial and temporal distribution and the mechanism of bacterial community construction. The mechanism of bacterial community construction is the key to community structure and lifestyle, and the influence of this aspect has not been thoroughly studied. This study analyzed the response of bacteria in water and sediment in different seasons to urban activities in Jinsha River. The results showed that the influence of urban activities on bacterial community structure in sediment was greater than that in water. The input of pollution in different regions changed the diversity and abundance of water and sediments bacteria and promoted bacterial community reconstruction to a certain extent. Co-network analysis found that many metal-mediated species are core species within the same module and can be used to mitigate pollution caused by metal or organic pollutants due to interspecific solid interactions. Different potential pollution sources around urban rivers affect the metabolic function of bacteria in aquatic ecosystems and promote the detoxification function of bacteria in different media. The results of this study supplement our understanding of the characteristics of microbial communities in urban river systems and provide clues for understanding the maintenance mechanism of microbial diversity in multi-pollution environments.


Asunto(s)
Bacterias , Ciudades , Monitoreo del Ambiente , Microbiología del Agua , Ríos/microbiología , Ríos/química , Microbiota , Contaminantes Químicos del Agua/análisis , China , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química
2.
Ecotoxicol Environ Saf ; 283: 116770, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39067077

RESUMEN

Isotope technology is an ideal tool for tracing the sources of certain pollutants or providing insights into environmental processes. In recent years, the advent of multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has enabled the precise measurement of various metal stable isotopes. Due to the presence of "fingerprint" properties in various environmental samples, metal stable isotopes have been applied to distinguish the source of contaminants effectively and further understand the corresponding environmental processes. The environmental fate of metal elements is strongly controlled by adsorption, an essential process for the distribution of elements between the dissolved and particulate phases. The adsorption of metal elements on mineral and organic surfaces significantly affects their biogeochemical cycles in the environment. Therefore, it is crucial to elucidate the fractionation characteristics of stable metal isotopes during the adsorption process. In this review, three typical transitional metal elements were selected, considering Mo as the representative of anionic species and Fe and Zn as the representative of cationic species. For Mo, the heavier Mo isotope is preferentially adsorbed in the solution phase, pH has a more significant influence on isotope fractionation, and temperature and ionic strength are relatively insensitive. Differences in coordination environments between dissolved and adsorbed Mo during adsorption, i.e., attachment mode (inner- or outer-sphere) or molecular symmetry (e.g., coordination number and magnitude of distortion), are likely responsible for isotopic fractionation. For Fe, The study of equilibrium/kinetic Fe isotopic fractionation in aqueous Fe(II)-mineral is not simple. The interaction between aqueous Fe(II) and Fe (hydroxyl) oxides is complex and dynamic. The isotope effect is due to coupled electron and atom exchange between adsorbed Fe(II), aqueous Fe(II), and reactive Fe(III) on the surface of Fe (hydroxyl) oxide. For Zn, the heavier Fe isotope preferentially adsorbs on the solid phase, and pH and ionic strength are essential influencing factors. The difference in coordination environment may be the cause of isotope fractionation.


Asunto(s)
Fraccionamiento Químico , Isótopos , Metales , Adsorción , Fraccionamiento Químico/métodos , Metales/química , Metales/análisis , Monitoreo del Ambiente/métodos , Concentración de Iones de Hidrógeno , Contaminantes Ambientales/química , Contaminantes Ambientales/análisis
3.
Sci Total Environ ; 913: 169563, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145672

RESUMEN

The migration mechanism of vanadium (V) in the soil-pore water-maize system has not been revealed. This study conducted pot experiments under artificial control conditions to reveal V's distribution and transport mechanism under different growth stages and V content gradient stress. The V content in the soil pore water gradually increased by an order of magnitude. The V content of pore water in the no-plant group was higher than that in the plant group, indicating that the maize roots absorbed V. The V exists in the form of pentavalent oxygen anions, in which H2VO4- occupies the most significant proportion. With increasing V content, the root area, root number, root length, and tip number decreased significantly. The malondialdehyde content in maize leaves showed an increasing trend, indicating the degree of lipid peroxidation was gradually enhanced. The V content was in the order of root > leaf > stem > fruit and maturity stage > flowering stage > jointing stage, respectively. The transfer coefficient reached a maximum under natural conditions, and increased gradually with the growth. The results of synchrotron radiation X-ray absorption near edge structure (XANES) analysis showed that Fe in maize roots mainly comprised of Fe2O3 and Fe3O4. The Fe in the soil is primarily existed in lepidocrocite and Fe2O3. The µ-XRF analysis showed that V and Fe enriched in the roots with a positive relationship, indicating the synergistic absorption of V and Fe by roots. Part of the Fe2+ reduced V5+ to V4+ or V3+ in the forms of VO2+, V(OH)2+, or V(OH)3 (s), and fixed V at the root. Soil weak acid-soluble fraction V and soil total V were vital factors to maize extraction. This study provides new insights into V biogeochemical behavior and a scientific basis for correctly evaluating its ecological and human health risks.


Asunto(s)
Suelo , Vanadio , Humanos , Suelo/química , Vanadio/análisis , Zea mays , Agua/análisis , Raíces de Plantas/química
4.
Environ Geochem Health ; 45(8): 6177-6198, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269417

RESUMEN

Metal mineral mining results in releases of large amounts of heavy metals into the environment, and it is necessary to better understand the response of rhizosphere microbial communities to simultaneous stress from multiple heavy metals (HMs), which directly impacts plant growth and human health. In this study, by adding different concentrations of cadmium (Cd) to a soil with high background concentrations of vanadium (V) and chromium (Cr), the growth of maize during the jointing stage was explored under limiting conditions. High-throughput sequencing was used to explore the response and survival strategies of rhizosphere soil microbial communities to complex HM stress. The results showed that complex HMs inhibited the growth of maize at the jointing stage, and the diversity and abundance of maize rhizosphere soil microorganisms were significantly different at different metal enrichment levels. In addition, according to the different stress levels, the maize rhizosphere attracted many tolerant colonizing bacteria, and cooccurrence network analysis showed that these bacteria interacted very closely. The effects of residual heavy metals on beneficial microorganisms (such as Xanthomonas, Sphingomonas, and lysozyme) were significantly stronger than those of bioavailable metals and soil physical and chemical properties. PICRUSt analysis revealed that the different forms of V and Cd had significantly greater effects on microbial metabolic pathways than all forms of Cr. Cr mainly affected the two major metabolic pathways: microbial cell growth and division and environmental information transmission. In addition, significant differences in rhizosphere microbial metabolism under different concentrations were found, and this can serve as a reference for subsequent metagenomic analysis. This study is helpful for exploring the threshold for the growth of crops in toxic HM soils in mining areas and achieving further biological remediation.


Asunto(s)
Metales Pesados , Microbiota , Contaminantes del Suelo , Humanos , Cadmio/análisis , Rizosfera , Metales Pesados/análisis , Suelo/química , Zea mays/metabolismo , Contaminantes del Suelo/análisis , Microbiología del Suelo
5.
Environ Sci Pollut Res Int ; 30(12): 34069-34084, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36504302

RESUMEN

The geochemical cycling of vanadium (V) in mining areas has attracted much attention. However, little knowledge was about the effects of tailing colloids on the fate and transport of vanadium in tailing reservoirs which was ignored before. This study investigated the interactions of tailing colloids from vanadium-titanium magnetite with vanadium. Colloid characterization, tailing leaching, adsorption, and column experiments of single and cotransport of tailing colloid with V were conducted. Results show that 98.08% V in the vanadium-titanium magnetite tailing was in the residual state with limited leachable V under various conditions. The adsorption of V to the tailing colloid was via electrostatic attraction and surface complexation on the heterogeneously distributed sorption sites on the colloid surface. The adsorption control step was the diffusion of V into the tailing colloid pores. The increase in pH and the decrease in ionic strength (IS) promoted the single transport of tailing colloid and V in quartz sand columns. In cotransport scenarios, V promoted the transport of tailing colloids via the surface coating effect. In contrast, the transport of V was retarded by the adsorbed tailing colloid on the quartz sand surface. The pre-adsorbed V in the column enhanced the subsequent transport of tailing colloids by electrical repulsion, while the pre-adsorbed tailing colloids facilitated the subsequent transport of V via cotransport of the released colloids with V. The high mobility of the tailing colloid and V and their cotransport in the porous media highly demonstrated the potential V pollution pathways that need to be taken into account.


Asunto(s)
Cuarzo , Arena , Óxido Ferrosoférrico , Titanio , Vanadio/química , Adsorción , Coloides/química , Porosidad
6.
Sci Total Environ ; 806(Pt 3): 151214, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34715225

RESUMEN

Soil contamination with multiple heavy metals has always been a pressing issue, but little attention has been given to V and Cr and their chemical fractions' impacts on microorganisms because Cr2O3 usually occurs as an associated mineral in vanadium mines. To investigate this issue, samples (N1-N6) less affected by anthropogenic activities were selected for microbial analysis. The area near the refinery was heavily contaminated according to the PLI (pollution load index). Actinobacteriota, Proteobacteria, and Chloroflexi were the dominant phyla in the soil. The diversity of bacteria was positively influenced by V and Cr and negatively influenced by pH, while the abundance was positively correlated with soil nutrients. Interestingly, the influence of heavy metals in the residual fraction on the microbial community structure and functional metabolism was higher than that in the oxidizable fraction, which may be due to the relatively low heavy metal valence of the oxidizable fraction, suggesting that low valence binding forms of multivalence elements have little effect on microorganisms in the soil. Ultimately, two strains with great efficiency in reducing V and Cr were screened, and co-occurrence network characteristics with significant positive interactions suggested that Bacillus can coordinate community structure in the same niche. This research will help to explore the bioavailability of heavy metals and further achieve the bioremediation of heavy metal contamination in soil.


Asunto(s)
Contaminantes del Suelo , Vanadio , Bacterias , Biodegradación Ambiental , Óxido Ferrosoférrico , Microbiología del Suelo , Contaminantes del Suelo/análisis , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA