Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Biomed Pharmacother ; 175: 116716, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38735084

RESUMEN

Biofilms often engender persistent infections, heightened antibiotic resistance, and the recurrence of infections. Therefor, infections related to bacterial biofilms are often chronic and pose challenges in terms of treatment. The main transcription regulatory factor, CsgD, activates csgABC-encoded curli to participate in the composition of extracellular matrix, which is an important skeleton for biofilm development in enterobacteriaceae. In our previous study, a wide range of natural bioactive compounds that exhibit strong affinity to CsgD were screened and identified via molecular docking. Tannic acid (TA) was subsequently chosen, based on its potent biofilm inhibition effect as observed in crystal violet staining. Therefore, the aim of this study was to investigate the specific effects of TA on the biofilm formation of clinically isolated Escherichia coli (E. coli). Results demonstrated a significant inhibition of E. coli Ec032 biofilm formation by TA, while not substantially affecting the biofilm of the ΔcsgD strain. Moreover, deletion of the csgD gene led to a reduction in Ec032 biofilm formation, alongside diminished bacterial motility and curli synthesis inhibition. Transcriptomic analysis and RT-qPCR revealed that TA repressed genes associated with the csg operon and other biofilm-related genes. In conclusion, our results suggest that CsgD is one of the key targets for TA to inhibit E. coli biofilm formation. This work preliminarily elucidates the molecular mechanisms of TA inhibiting E. coli biofilm formation, which could provide a lead structure for the development of future antibiofilm drugs.

2.
BMC Vet Res ; 20(1): 212, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764041

RESUMEN

BACKGROUND: Acinetobacter lwoffii (A.lwoffii) is a serious zoonotic pathogen that has been identified as a cause of infections such as meningitis, bacteremia and pneumonia. In recent years, the infection rate and detection rate of A.lwoffii is increasing, especially in the breeding industry. Due to the presence of biofilms, it is difficult to eradicate and has become a potential super drug-resistant bacteria. Therefore, eradication of preformed biofilm is an alternative therapeutic action to control A.lwoffii infection. The present study aimed to clarify that baicalin could eradicate A.lwoffii biofilm in dairy cows, and to explore the mechanism of baicalin eradicating A.lwoffii. RESULTS: The results showed that compared to the control group, the 4 MIC of baicalin significantly eradicated the preformed biofilm, and the effect was stable at this concentration, the number of viable bacteria in the biofilm was decreased by 0.67 Log10CFU/mL. The total fluorescence intensity of biofilm bacteria decreased significantly, with a reduction rate of 67.0%. There were 833 differentially expressed genes (367 up-regulated and 466 down-regulated), whose functions mainly focused on oxidative phosphorylation, biofilm regulation system and trehalose synthesis. Molecular docking analysis predicted 11 groups of target proteins that were well combined with baicalin, and the content of trehalose decreased significantly after the biofilm of A.lwoffii was treated with baicalin. CONCLUSIONS: The present study evaluated the antibiofilm potential of baicalin against A.lwoffii. Baicalin revealed strong antibiofilm potential against A.lwoffii. Baicalin induced biofilm eradication may be related to oxidative phosphorylation and TCSs. Moreover, the decrease of trehalose content may be related to biofilm eradication.


Asunto(s)
Acinetobacter , Antibacterianos , Biopelículas , Flavonoides , Leche , Biopelículas/efectos de los fármacos , Animales , Flavonoides/farmacología , Acinetobacter/efectos de los fármacos , Bovinos , Leche/microbiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Femenino , Infecciones por Acinetobacter/veterinaria , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología
3.
Sci Bull (Beijing) ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38485624

RESUMEN

The Zr(IV) ions are easily hydrolyzed to form oxides, which severely limits the discovery of new structures and applications of Zr-based compounds. In this work, three ferrocene (Fc)-functionalized Zr-oxo clusters (ZrOCs), Zr9Fc6, Zr10Fc6 and Zr12Fc8 were synthesized through inhibiting the hydrolysis of Zr(IV) ions, which show increased nuclearity and regular structural variation. More importantly, these Fc-functionalized ZrOCs were used as heterogeneous catalysts for the transfer hydrogenation of levulinic acid (LA) and phenol oxidation reactions for the first time, and displayed outstanding catalytic activity. In particular, Zr12Fc8 with the largest number of Zr active sites and Fc groups can achieve > 95% yield for LA-to-γ-valerolactone within 4 h (130 °C) and > 98% yield for 2,3,6-trimethylphenol-to-2,3,5-trimethyl-p-benzoquinone within 30 min (80 °C), showing the best catalytic performance. Catalytic characterization combined with theory calculations reveal that in the Fc-functionalized ZrOCs, the Zr active sites could serve as substrate adsorption sites, while the Fc groups could act as hydrogen transfer reagent or Fenton reagent, and thus achieve effectively intramolecular metal-ligand synergistic catalysis. This work develops functionalized ZrOCs as catalysts for thermal-triggered redox reactions.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38530540

RESUMEN

Staphylococcus aureus is a major cause of hospital-associated infections worldwide. The organism's ability to form biofilms has led to resistance against current treatment options such as beta-lactams, glycopeptides, and daptomycin. The ArlRS two-component system is a crucial regulatory system necessary for S. aureus autolysis, biofilm formation, capsule synthesis, and virulence. This study aims to investigate the role of the arlR deletion mutant in the detection and activation of S. aureus. We created an arlR deleted mutant and complementary strains and characterized their impact on the strains using partial growth measurement. The quantitative real-time PCR was performed to determine the expression of icaA, and the microscopic images of adherent cells were captured at the optical density of 600 to determine the primary bacterial adhesion. The biofilm formation assay was utilized to investigate the number of adherent cells using crystal violet staining. Eventually, the Triton X-100 autolysis assay was used to determine the influence of arlR on the cell autolytic activities. Our findings indicate that the deletion of arlR reduced the transcriptional expression of icaA but not icaR in the ica operon, leading to decrease in polysaccharide intercellular adhesin (PIA) synthesis. Compared to the wild-type and the complementary mutants, the arlR mutant exhibited decreased in biofilm production but increased autolysis. It concluded that the S. aureus response regulatory ArlR influences biofilm formation, agglutination, and autolysis. This work has significantly expanded our knowledge of the ArlRS two-component regulatory system and could aid in the development of novel antimicrobial strategies against S. aureus.

5.
Front Microbiol ; 15: 1293990, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476937

RESUMEN

Introduction: Acinetobacter baumannii PmrAB is a crucial two-component regulatory system (TCS) that plays a vital role in conferring resistance to polymyxin. PmrA, a response regulator belonging to the OmpR/PhoB family, is composed of a C-terminal DNA-binding effector domain and an N-terminal receiver domain. The receiver domain can be phosphorylated by PmrB, a transmembrane sensor histidine kinase that interacts with PmrA. Once phosphorylated, PmrA undergoes a conformational change, resulting in the formation of a symmetric dimer in the receiver domain. This conformational change facilitates the recognition of promoter DNA by the DNA-binding domain of PmrA, leading to the activation of adaptive responses. Methods: X-ray crystallography was carried out to solve the structure of PmrA receiver domain. Electrophoretic mobility shift assay and Isothermal titration calorimetry were recruited to validate the interaction between the recombinant PmrA protein and target DNA. Field-emission scanning electron microscopy (FE-SEM) was employed to characterize the surface morphology of A. baumannii in both the PmrA knockout and mutation strains. Results: The receiver domain of PmrA follows the canonical α5ß5 response regulator assembly, which undergoes dimerization upon phosphorylation and activation. Beryllium trifluoride is utilized as an aspartate phosphorylation mimic in this process. Mutations involved in phosphorylation and dimerization significantly affected the expression of downstream pmrC and naxD genes. This impact resulted in an enhanced cell surface smoothness with fewer modifications, ultimately contributing to a decrease in colistin (polymyxin E) and polymyxin B resistance. Additionally, a conservative direct-repeat DNA PmrA binding sequence TTTAAGNNNNNTTTAAG was identified at the promoter region of the pmrC and naxD gene. These findings provide structural insights into the PmrA receiver domain and reveal the mechanism of polymyxin resistance, suggesting that PmrA could be a potential drug target to reverse polymyxin resistance in Acinetobacter baumannii.

6.
Front Immunol ; 15: 1328933, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375474

RESUMEN

Background: Existing studies on the relationship between tea intake and lung diseases have yielded inconsistent results, leading to an ongoing dispute on this issue. The impact of tea consumption on the respiratory system remained elucidating. Materials and methods: We conducted a two-sample Mendelian randomization (MR) study to evaluate the associations between five distinct tea intake phenotypes and 15 different respiratory outcomes using open Genome-wide association study (GWAS) data. The inverse variance weighted (IVW) was used for preliminary screening and a variety of complementary methods were used as sensitivity analysis to validate the robustness of MR estimates. Pathway enrichment analysis was used to explore possible mechanisms. Results: IVW found evidence for a causal effect of standard tea intake on an increased risk of lung squamous cell cancer (LSCC) (OR = 1.004; 95% CI = 1.001-1.007; P = 0.00299). No heterogeneity or pleiotropy was detected. After adjustment for potential mediators, including smoking, educational attainment, and time spent watching television, the association was still robust in multivariable MR. KEGG and GO enrichment predicted proliferation and activation of B lymphocytes may play a role in this causal relation. No causalities were observed when evaluating the effect of other kinds of tea intake on various pulmonary diseases. Conclusion: Our MR estimates provide causal evidence of the independent effect of standard tea intake (black tea intake) on LSCC, which may be mediated by B lymphocytes. The results implied that the population preferring black tea intake should be wary of a higher risk of LSCC.


Asunto(s)
Camellia sinensis , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neoplasias Pulmonares/genética ,
7.
Sci Bull (Beijing) ; 69(4): 492-501, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38044194

RESUMEN

The performance applications (e.g., photocatalysis) of zirconium (Zr) and hafnium (Hf) based complexes are greatly hindered by the limited development of their structures and the relatively inert metal reactivity. In this work, we constructed two ultrastable Zr/Hf-based clusters (Zr9-TC4A and Hf9-TC4A) using hydrophobic 4-tert-butylthiacalix[4]arene (H4TC4A) ligands, in which unsaturated coordinated sulfur (S) atoms on the TC4A4- ligand can generate strong metal-ligand synergy with nearby active metal Zr/Hf sites. As a result, these two functionalized H4TC4A ligands modified Zr/Hf-oxo clusters, as catalysts for the amine oxidation reaction, exhibited excellent catalytic activity, achieving very high substrate conversion (>99%) and product selectivity (>90%). Combining comparative experiments and theoretical calculations, we found that these Zr/Hf-based cluster catalysts accomplish efficient amine oxidation reactions through synergistic effect between metals and ligands: (i) The photocatalytic benzylamine (BA) oxidation reaction was achieved by the synergistic effect of the dual active sites, in which, the naked S sites on the TC4A4- ligand oxidize the BA by photogenerated hole and oxygen molecules are reduced by photogenerated electrons on the metal active sites; (ii) in the aniline oxidation reaction, aniline was adsorbed by the bare S sites on ligands to be closer to metal active sites and then oxidized by the oxygen-containing radicals activated by the metal sites, thus completing the catalytic reaction under the synergistic catalytic effect of the proximity metal-ligand. In this work, the Zr/Hf-based complexes applied in the oxidation of organic amines have been realized using active S atom-directed metal-ligand synergistic catalysis and have demonstrated very high reactivity.

9.
Medicine (Baltimore) ; 102(46): e36019, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37986309

RESUMEN

Based on the importance of chronic inflammation in the pathogenesis of periodontitis and diabetes, the bidirectional relationship between these 2 diseases has been widely confirmed. However, the molecular mechanisms of bidirectional relationship still need to be studied further. In this study, gene expression profile data for diabetes and periodontitis were obtained from Gene Expression Omnibus (GEO) database. Integrative analytical platform were constructed, including common differentially expressed genes (cDEGs), Gene Ontology-Kyoto Encyclopedia of Genes and Genomes (GO-KEGG), and protein-protein interaction. Hub genes and essential modules were detected via Cytoscape. Key hub genes and signaling pathway that mediate chronic inflammation were validated by qPCR and Western blot. Eleven cDEGs were identified. Function analysis showed that cDEGs plays an important role in inflammatory response, cytokine receptor binding, TNF signaling pathway. As hub genes, CXCR4, IL1B, IL6, CXCL2, and MMP9 were detected based on the protein-protein interactions network. IL1B, CXCR4 mRNA were up-regulated in gingivitis samples compared with normal tissues (P < .05). Western blot indicated that the levels of TNF were enhanced in gingivitis of type 2 diabetes compared with normal tissues (P < .01). Hub gene and TNF signaling pathway are helpful to elucidate the molecular mechanism of the bidirectional relationship between periodontitis and diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Gingivitis , Periodontitis , Humanos , Perfilación de la Expresión Génica , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Biomarcadores , Periodontitis/genética , Inflamación , Biología Computacional
10.
ACS Sens ; 8(11): 4253-4263, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37862691

RESUMEN

Chemiresistive ammonia gas (NH3) sensors have been playing a significant role in the fields of environmental protection, food safety monitoring, and air quality evaluation. Nevertheless, balancing the high sensitivity and humidity tolerance remains challenging. Herein, the two-dimensional (2D) heterostructures of molybdenum trioxide (MoO3) nanoflakes decorated with dysprosium oxide (Dy2O3) nanosheets (termed Dy2O3/MoO3) were synthesized via a facile probe-sonication method. With respect to pristine MoO3 counterparts, the optimal Dy2O3/MoO3 sensors possessed a 4.49-fold larger response at a lower temperature (30.52@328.2 °C vs 6.8@369.7 °C toward 10 ppm of NH3), shorter response/recovery times (11.6/2.9 s vs 26.9/43.4 s), 52.6-fold higher sensitivity (17.35/ppm vs 0.33/ppm), and a lower theoretical detection limit (1.02 vs 32.82 ppb). Besides the nice reversibility, wide detection range (0.45-100 ppm) and robust long-term stability, inspiringly, the Dy2O3/MoO3 sensors showed a nearly humidity-independent response. These impressive improvements in the NH3-sensing performance were attributed to numerous heterojunctions to strengthen the carrier concentration modulation and the compensation/protection effect of Dy2O3 to mitigate the humidity effect. Moreover, the Dy2O3/MoO3 sensors showed preliminary application potential in monitoring pork freshness. This work provides a universal methodology for constructing NH3 gas sensors with high sensitivity and good humidity resistance and probably extends the application scenarios of MoO3-based sensors in the Internet of Things in the future.


Asunto(s)
Amoníaco , Alimentos , Humedad , Inocuidad de los Alimentos , Internet
11.
Angew Chem Int Ed Engl ; 62(36): e202308505, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37435787

RESUMEN

Photocatalytic synthesis of hydrogen peroxide (H2 O2 ) is a potential clean method, but the long distance between the oxidation and reduction sites in photocatalysts hinders the rapid transfer of photogenerated charges, limiting the improvement of its performance. Here, a metal-organic cage photocatalyst, Co14 (L-CH3 )24 , is constructed by directly coordinating metal sites (Co sites) used for the O2 reduction reaction (ORR) with non-metallic sites (imidazole sites of ligands) used for the H2 O oxidation reaction (WOR), which shortens the transport path of photogenerated electrons and holes, and improves the transport efficiency of charges and activity of the photocatalyst. Therefore, it can be used as an efficient photocatalyst with a rate of as high as 146.6 µmol g-1 h-1 for H2 O2 production under O2 -saturated pure water without sacrificial agents. Significantly, the combination of photocatalytic experiments and theoretical calculations proves that the functionalized modification of ligands is more conducive to adsorbing key intermediates (*OH for WOR and *HOOH for ORR), resulting in better performance. This work proposed a new catalytic strategy for the first time; i.e., to build a synergistic metal-nonmetal active site in the crystalline catalyst and use the host-guest chemistry inherent in the metal-organic cage (MOC)to increase the contact between the substrate and the catalytically active site, and finally achieve efficient photocatalytic H2 O2 synthesis.

12.
Am J Cancer Res ; 13(6): 2681-2701, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424813

RESUMEN

Checkpoint inhibitor pneumonitis (CIP) is a common type of immune-related adverse events (irAEs) with poor clinical prognosis. Currently, there is a lack of effective biomarkers and predictive models to predict the occurrence of CIP. This study retrospectively enrolled 547 patients who received immunotherapy. The patients were divided into CIP cohorts of any grade, or grade ≥2 or ≥3. Multivariate logistic regression analysis was used to determine the independent risk factors, based on which we established Nomogram A and B for respectively predicting any grade or grade ≥2 CIP. For Nomogram A to predict any grade CIP, the C indexes in the training and validation cohorts were 0.827 (95% CI=0.772-0.881) and 0.860 (95% CI=0.741-0.918), respectively. Similarly, for Nomogram B to predict grade 2 or higher CIP, the C indexes of the training and validation cohorts were 0.873 (95% CI=0.826-0.921) and 0.904 (95% CI=0.804-0.973), respectively. In conclusion, the predictive power of nomograms A and B has proven satisfactory following internal and external verification. They are promising clinical tools that are convenient, visual, and personalized for assessing the risks of developing CIP.

13.
Cell Rep ; 42(7): 112781, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37421630

RESUMEN

Type VI secretion system is widely used in Gram-negative bacteria for injecting toxic effectors into neighboring prokaryotic or eukaryotic cells. Various effectors can be loaded onto the T6SS delivery tube via its core components: Hcp, VgrG, or PAAR. Here, we report 2.8-Å resolution cryo-EM structure of intact T6SS Hcp5-VgrG-PAAR cargo delivery system and crystal structure of unbound Hcp5 from B. fragilis NCTC 9343. Loading of Hcp5 hexameric ring onto VgrG causes expansion of its inner cavity and external surface, explaining how structural changes could be propagated to regulate co-polymerization and surrounding contractile sheath. High-affinity binding between Hcp and VgrG causes entropically unfavorable structuring of long loops. Furthermore, interactions between VgrG trimer and Hcp hexamer are asymmetric, with three of the six Hcp monomers exhibiting a major loop flip. Our study provides insights into the assembly, loading, and firing of T6SS nanomachine that contributes to bacterial inter-species competition and host interactions.


Asunto(s)
Sistemas de Secreción Tipo VI , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/metabolismo
14.
J Am Chem Soc ; 145(29): 16098-16108, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37428127

RESUMEN

While the difference in catalytic reactivity between mono- and multimetallic sites is often attributed to more than just the number of active sites, still few catalyst model systems have been developed to explore more underlying causal factors. In this work, we have elaborately designed and constructed three stable calix[4]arene (C4A)-functionalized titanium-oxo compounds, Ti-C4A, Ti4-C4A, and Ti16-C4A, with well-defined crystal structures, increasing nuclearity, and tunable light absorption capacity and energy levels. Among them, Ti-C4A and Ti16-C4A can be taken as model catalysts to compare the differences in reactivity between mono- and multimetallic sites. Taking CO2 photoreduction as the basic catalytic reaction, both compounds can achieve CO2-to-HCOO- conversion with high selectivity (close to 100%). Moreover, the catalytic activity of multimetallic Ti16-C4A is up to 2265.5 µmol g-1 h-1, which is at least 12 times higher than that of monometallic Ti-C4A (180.0 µmol g-1 h-1), and is the best-performing crystalline cluster-based photocatalyst known to date. Catalytic characterization combined with density functional theory calculations shows that in addition to the advantage of having more metal active sites (for adsorption and activation of more CO2 molecules), Ti16-C4A can effectively reduce the activation energy required for the CO2 reduction reaction by completing the multiple electron-proton transfer process rapidly with synergistic metal-ligand catalysis, thus exhibiting superior catalytic performance to that of monometallic Ti-C4A. This work provides a crystalline catalyst model system to explore the potential factors underlying the difference in catalytic reactivity between mono- and multimetallic sites.

15.
Plants (Basel) ; 12(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37299174

RESUMEN

Plant invasion has severely damaged ecosystem stability and species diversity worldwide. The cooperation between arbuscular mycorrhizal fungi (AMF) and plant roots is often affected by changes in the external environment. Exogenous phosphorus (P) addition can alter the root absorption of soil resources, thus regulating the root growth and development of exotic and native plants. However, it remains unclear how exogenous P addition regulates the root growth and development of exotic and native plants mediated by AMF, affecting the exotic plant invasion. In this experiment, the invasive plant Eupatorium adenophorum and native plant Eupatorium lindleyanum were selected and cultured under intraspecific (Intra-) competition and interspecific (Inter-) competition conditions, involving inoculation with (M+) and without AMF (M-) and three different levels of P addition including no addition (P0), addition with 15 mg P kg-1 soil (P15), and addition with 25 mg P kg-1 soil (P25) for the two species. Root traits of the two species were analyzed to study the response of the two species' roots to AMF inoculation and P addition. The results showed that AMF significantly promoted the root biomass, length, surface area, volume, tips, branching points, and carbon (C), nitrogen (N), and P accumulation of the two species. Under M+ treatment, the Inter- competition decreased the root growth and nutrient accumulation of invasive E. adenophorum but increased the root growth and nutrient accumulation of native E. lindleyanum relative to the Intra- competition. Meanwhile, the exotic and native plants responded differently to P addition, exhibiting root growth and nutrient accumulation of invasive E. adenophorum increased with P addition, whereas native E. lindleyanum reduced with P addition. Further, the root growth and nutrition accumulation of native E. lindleyanum were higher than invasive E. adenophorum under Inter- competition. In conclusion, exogenous P addition promoted the invasive plant but reduced the native plant in root growth and nutrient accumulation regulated by AMF, although the native plant outcompeted the invasive plant when the two species competed. The findings provide a critical perspective that the anthropogenic P fertilizer addition might potentially contribute to the successful invasion of exotic plants.

16.
Environ Sci Pollut Res Int ; 30(33): 80496-80511, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37300731

RESUMEN

Arbuscular mycorrhizal (AM) fungi can affect plant growth by regulating competition. Nutrient-deficient karst habitats contain abundant plants that compete for nutrients through interspecific or intraspecific competition, involving the nutritional transformation of litter decomposition. However, how plant competition in the presence of AM fungi and litter affects root development and nutrition remains unclear. A potted experiment was conducted, including AM fungus treatment with or without Glomus etunicatum, the competition treatment concerning intraspecific or interspecific competition through planting Broussonetia papyrifera and Carpinus pubescens seedlings, and the litter treatment with or without the mixture of B. papyrifera and C. pubescens litter leaves. The root morphological traits were analyzed, and nitrogen (N), phosphorus (P), and potassium (K) were measured. The results showed that AM fungus differently affected the root morphological development and nutrition of both competitive plants, significantly promoting B. papyrifera roots in the increase of dry weight, length, volume, surface area, tips, and branches as well as N, P, and K acquisitions regardless of litter addition. However, there was no apparent influence for C. pubescens roots, except for the diameter in the interspecific competition with litter. The root dry weight, length, volume, surface area, and tips of B. papyrifera under two competitive styles were significantly greater than C. pubescens regulated by AM fungus, presenting significant species differences. The responses of the relative competition intensity (RCI) on root morphological and nutritional traits indicated that AM fungus and litter both asymmetrically alleviated more competitive pressure for B. papyrifera than C. pubescens, and the interspecific competition facilitated more root morphological development and nutrition utilization by endowing B. papyrifera root superiority relative to C. pubescens compared with the intraspecific competition. In conclusion, interspecific competition is more beneficial for plant root development and nutrition than intraspecific competition in the presence of AM fungus and litter via asymmetrically alleviating competitive pressure for different plants.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Árboles , Raíces de Plantas , Hongos , Ecosistema , Ecología
17.
Angew Chem Int Ed Engl ; 62(33): e202304728, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37321974

RESUMEN

Structural variants of high-nuclearity clusters are extremely important for their modular assembly study and functional expansion, yet the synthesis of such giant structural variants remains a great challenge. Herein, we prepared a lantern-type giant polymolybdate cluster (L-Mo132 ) containing equal metal nuclearity with the famous Keplerate type Mo132 (K-Mo132 ). The skeleton of L-Mo132 features a rare truncated rhombic triacontrahedron, which is totally different with the truncated icosahedral K-Mo132 . To the best of our knowledge, this is the first time to observe such structural variants in high-nuclearity cluster built up of more than 100 metal atoms. Scanning transmission electron microscopy reveals that L-Mo132 has good stability. More importantly, because the pentagonal [Mo6 O27 ]n- building blocks in L-Mo132 are concave instead of convex in the outer face, it contains multiple terminal coordinated water molecules on its outer surface, which make it expose more active metal sites to display superior phenol oxidation performance, which is more higher than that of K-Mo132 coordinated in M=O bonds on the outer surface.

18.
Structure ; 31(8): 935-947.e4, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37329879

RESUMEN

PaaY is a thioesterase that enables toxic metabolites to be degraded through the bacterial phenylacetic acid (PA) pathway. The Acinetobacter baumannii gene FQU82_01591 encodes PaaY, which we demonstrate to possess γ-carbonic anhydrase activity in addition to thioesterase activity. The crystal structure of AbPaaY in complex with bicarbonate reveals a homotrimer with a canonical γ-carbonic anhydrase active site. Thioesterase activity assays demonstrate a preference for lauroyl-CoA as a substrate. The AbPaaY trimer structure shows a unique domain-swapped C-termini, which increases the stability of the enzyme in vitro and decreases its susceptibility to proteolysis in vivo. The domain-swapped C-termini impact thioesterase substrate specificity and enzyme efficacy without affecting carbonic anhydrase activity. AbPaaY knockout reduced the growth of Acinetobacter in media containing PA, decreased biofilm formation, and impaired hydrogen peroxide resistance. Collectively, AbPaaY is a bifunctional enzyme that plays a key role in the metabolism, growth, and stress response mechanisms of A. baumannii.


Asunto(s)
Acinetobacter baumannii , Anhidrasas Carbónicas , Acinetobacter baumannii/genética , Anhidrasas Carbónicas/genética , Biopelículas , Antibacterianos/química
19.
Front Public Health ; 11: 1137230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377555

RESUMEN

Background: Atrial fibrill ation (AF) is a predominant public health concern in older adults. Therefore, this study aimed to explore the global, regional, and national burden of AF in older adults aged 60-89 between 1990 and 2019. Methods: The morbidity, mortality, disability-adjusted life years (DALYs), and age-standardized rates of AF were refined from the Global Burden of Diseases study 2019. The epidemiological characteristics were assessed based on numerical values, age-standardized rates per 100,000 person-years, and estimated annual percentage changes (EAPC). Results: Globally, a total of 33.31 million AF cases, 219.4 thousand deaths, and 65.80 million DALYs were documented in 2019. There were no appreciable changes in EAPC from 1990 to 2019. The disease burden of AF differed significantly across different territories and countries. At the national level, China exhibited the highest number of incident cases [818,493 (562,871-1,128,695)], deaths [39,970 (33,722-46,387)], and DALYs [1,383,674 (1,047,540-1,802,516)]. At the global level, high body mass index (BMI) and high systolic blood pressure (SBP) were two predominant risk factors contributing to the proportion of AF-related deaths. Conclusion: AF in older adults remains a major public health concern worldwide. The burden of AF varies widely at both national and regional levels. From 1990 to 2019, the cases of incidences, deaths, and DALYs have shown a global increase. The ASIR, ASMR, and ASDR have declined in the high-moderate and high SDI regions; however, the burden of AF increased promptly in the lower SDI regions. Special attention should be paid to the main risk factors for high-risk individuals with AF, which can help control systolic blood pressure and body mass index within normal limits. Over all, it is necessary to illustrate the features of the global AF burden and develop more effective and targeted prevention and treatment strategies.


Asunto(s)
Fibrilación Atrial , Humanos , Anciano , Fibrilación Atrial/epidemiología , Años de Vida Ajustados por Calidad de Vida , Carga Global de Enfermedades , Factores de Riesgo , Costo de Enfermedad
20.
J Am Chem Soc ; 145(11): 6112-6122, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36883963

RESUMEN

Rational design of crystalline catalysts with superior light absorption and charge transfer for efficient photoelectrocatalytic (PEC) reaction coupled with energy recovery remains a great challenge. In this work, we elaborately construct three stable titanium-oxo clusters (TOCs, Ti10Ac6, Ti10Fc8, and Ti12Fc2Ac4) modified with a monofunctionalized ligand (9-anthracenecarboxylic acid (Ac) or ferrocenecarboxylic acid (Fc)) and bifunctionalized ligands (Ac and Fc). They have tunable light-harvesting and charge transfer capacities and thus can serve as outstanding crystalline catalysts to achieve efficient PEC overall reaction, that is, the integration of anodic organic pollutant 4-chlorophenol (4-CP) degradation and cathodic wastewater-to-H2 conversion. These TOCs can all exhibit very high PEC activity and degradation efficiency of 4-CP. Especially, Ti12Fc2Ac4 decorated with bifunctionalized ligands exhibits better PEC degradation efficiency (over 99%) and H2 generation than Ti10Ac6 and Ti10Fc8 modified with a monofunctionalized ligand. The study of the 4-CP degradation pathway and mechanism revealed that such better PEC performance of Ti12Fc2Ac4 is probably due to its stronger interactions with the 4-CP molecule and better •OH radical production. This work not only presents the effective combination of organic pollutant degradation and simultaneously H2 evolution reaction using crystalline coordination clusters as both anodic and cathodic catalyst but also develops a new PEC application for crystalline coordination compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...