Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(22): 5472-5480, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38805383

RESUMEN

The structural evolution of flexible nanochannels within a 2D material membrane, influenced by the ingress of water molecules, plays a crucial role in the membrane's filtration and structural stability. However, the experimental observation of nanoscale water is challenging, and current studies mostly focus on rigid nanochannels. Further investigation on the nanoconfined water is urgently needed, considering the flexibility and deformation of the channel. In this work, MD simulations and theoretical analyses are conducted to investigate the water structure and thermodynamic properties when confined within both rigid and flexible graphene/graphene oxide (GO) nanochannels. In free rigid graphene nanochannels, the interlayer distance exhibits a quantized increase with the number of water molecules, along with sudden changes in entropy, potential energy, and free energy of the water molecules. Meanwhile, in flexible graphene nanochannels, the average interlayer space increases linearly with the number of water molecules. In free rigid GO nanochannels, with the increase of oxidation concentration, the quantized increase in the interlayer space gradually diminishes, accompanied by a decrease in both potential energy and free energy. This work provides insights into the configurational evolution of flexible nanochannels within water, offering guidance in fields such as desalination and mass transport of 2D material membranes.

2.
New Phytol ; 240(5): 1930-1943, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37737036

RESUMEN

In the current genomic era, the search and deployment of new semi-dwarf alleles have continued to develop better plant types in all cereals. We characterized an agronomically optimal semi-dwarf mutation in Zea mays L. and a parallel polymorphism in Sorghum bicolor L. We cloned the maize brachytic1 (br1-Mu) allele by a modified PCR-based Sequence Amplified Insertion Flanking Fragment (SAIFF) approach. Histology and RNA-Seq elucidated the mechanism of semi-dwarfism. GWAS linked a sorghum plant height QTL with the Br1 homolog by resequencing a West African sorghum landraces panel. The semi-dwarf br1-Mu allele encodes an MYB transcription factor78 that positively regulates stalk cell elongation by interacting with the polar auxin pathway. Semi-dwarfism is due to differential splicing and low functional Br1 wild-type transcript expression. The sorghum ortholog, SbBr1, co-segregates with the major plant height QTL qHT7.1 and is alternatively spliced. The high frequency of the Sbbr1 allele in African landraces suggests that African smallholder farmers used the semi-dwarf allele to improve plant height in sorghum long before efforts to introduce Green Revolution-style varieties in the 1960s. Surprisingly, variants for differential splicing of Brachytic1 were found in both commercial maize and smallholder sorghum, suggesting parallel tuning of plant architecture across these systems.


Asunto(s)
Enanismo , Sorghum , Zea mays/genética , Zea mays/metabolismo , Sorghum/genética , Genes de Plantas , Grano Comestible/genética , Enanismo/genética
3.
New Phytol ; 237(4): 1204-1214, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36345913

RESUMEN

In maize (Zea mays L.), lateral roots are formed in the differentiation zone of all root types in a multi-step process. The maize mutant lateral rootless 1 (lrt1) is defective in lateral root formation in primary and seminal roots but not in shoot-borne roots. We cloned the lrt1 gene by mapping in combination with BSA-seq and subsequent validation via CRISPR/Cas9. The lrt1 gene encodes a 209 kDa homolog of the DDB1-CUL4-ASSOCIATED FACTOR (DCAF) subunit of the CUL4-based E3 ubiquitin ligase (CRL4) complex localized in the nucleus. DDB1-CUL4-ASSOCIATED FACTOR proteins are encoded by an evolutionary old gene family already present in nonseed plants. They are adaptors that bind substrate proteins and promote their ubiquitylation, thus typically marking them for subsequent degradation in the 26S proteasome. Gene expression studies demonstrated that lrt1 transcripts are expressed preferentially in the meristematic zone of all root types of maize. Downregulation of the rum1 gene in lrt1 mutants suggests that lrt1 acts upstream of the lateral root regulator rum1. Our results demonstrate that DCAF proteins play a key role in root-type-specific lateral root formation in maize. Together with its role in nitrogen acquisition in nitrogen-poor soil, lrt1 could be a promising target for maize improvement.


Asunto(s)
Ubiquitina-Proteína Ligasas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Subunidades de Proteína/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Meristema/metabolismo
4.
Nanotechnology ; 34(1)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36137514

RESUMEN

Nanowrinkles (i.e. the buckled nanoribbons) are widely observed in nano-devices assembled by two-dimensional (2D) materials. The existence of nanowrinkles significantly affects the physical (such as mechanical, electrical and thermal) properties of 2D materials, and thus further, impedes the applications of those devices. In this paper, we take the nanowrinkle formed in a monolayer graphene as a model system to study its deformation behaviours, especially the configuration evolution and the snap-through buckling instabilities, when subjected to the out-of-plane compression. By performing molecular dynamics simulation, the graphene nanowrinkles with or without self-adhesion (which are notated as 'clipped' state or 'bump' state, respectively) are obtained depending on the geometric size and the applied axial compressive pre-strain. The elastica theory is employed to quantify the shape of 'bump' nanowrinkles, as well as the critical condition of the transition between 'clipped' and 'bump' states. By applying out-of-plane compression to the generated graphene nanowrinkle, it flips to an opposite configuration via snap-through buckling. We identify four different buckling modes according to the configuration evolution. An unified phase diagram is constructed to describe those buckling modes. For the cases with negligible van der Waals interaction getting involved in the snap-buckling process, i.e. without self-adhesion, the force-displacement curves for nanowrinkles with same axial pre-strain but different sizes can be scaled to collapse. Moreover, the critical buckling loads can also be scaled and predicted by the extended elastica theory. Otherwise, for the cases with self-adhesion, which corresponds to the greater axial pre-strain, the van der Waals interaction makes the scaling collapse break down. It is expected that the analysis about the snap-through buckling of graphene nanowrinkles reported in this work will advance the understanding of the mechanical behaviours of wrinkled 2D materials and promote the design of functional nanodevices, such as nanomechanical resonators and capacitors.

5.
Langmuir ; 37(43): 12577-12585, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34672598

RESUMEN

The ionic transport in nanoscale channels with the critical size comparable to ions and solvents shows excellent performance on electrochemical desalination, ion separation, and supercapacitors. However, the key quantity ionic conductivity (σ) in the nanochannel that evaluates how easily the electric current is driven by an external voltage is still unknown because of the challenges in experimental measurement. In this work, we present an atomistic simulation-based study, which shows that how the ion concentration, nanoconfinement, and heterogeneous solvation modify the ionic conductivity in a two-dimensional graphene nanochannel. We find that σ in the confined channel is lower than that in the bulk (σb) at the same concentration along with enhanced ion-ion correlation. However, surprisingly, the local σ near the channel wall is more conductive than σb and is about 2-3 folds of the inner layer due to the highly concentrated charge carriers. Based on the layered feature of σ along the width of the channel, we propose a model that contains two dead (or depletion) layers, two highly conductive layers, and one inner layer to describe the ionic dynamics in the nanochannels. Our findings may open the way to unique nanofluidic functionalities, such as energy harvesting/storage and controlling transport at single-molecule and ion levels using the liquid layer near the wall.

6.
J Phys Chem B ; 125(34): 9824-9833, 2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34424717

RESUMEN

Low dimensional materials especially carbon materials hold high promise in the fields of water purification, mineral separation, energy harvesting/conversion, and so on. The fluidic devices fabricated by direct synthesis, lithography, or self-assembly of low dimensional materials provide opportunities for exploring the novel properties and applications of nanoconfined transport. Here, continuous filling of water and acetone molecules into a graphene nanochannel is investigated. A stairlike nonlinear dependence of the number of filling water molecules on interlayer distance d is found when d < 1 nm due to the existence of out-plane layered and in-plane ordered monolayer structure, while near-linear dependence is found for acetone because of the freely rotating configurations along with varying d during the filling process. The entropy, potential energy, and free energy of the confined system during the continuous filling are analyzed to understand the structural evolution of water. The energy-costs are discussed depending on the structure evolution of water during the filling, which is crucial to understanding the swelling and capillary condensation widely existing in the angstrom/nanometer-scale separation membranes.

7.
Nano Lett ; 21(2): 1161-1168, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33411539

RESUMEN

Corrosion of metals in atmospheric environments is a worldwide problem in industry and daily life. Traditional anticorrosion methods including sacrificial anodes or protective coatings have performance limitations. Here, we report atomically thin, polycrystalline few-layer graphene (FLG) grown by chemical vapor deposition as a long-term protective coating film for copper (Cu). A six-year old, FLG-protected Cu is visually shiny and detailed material characterizations capture no sign of oxidation. The success of the durable anticorrosion film depends on the misalignment of grain boundaries between adjacent graphene layers. Theoretical calculations further found that corrosive molecules always encounter extremely high energy barrier when diffusing through the FLG layers. Therefore, the FLG is able to prevent the corrosive molecules from reaching the underlying Cu surface. This work highlights the interesting structures of polycrystalline FLG and sheds insight into the atomically thin coatings for various applications.

8.
ACS Appl Mater Interfaces ; 13(1): 1158-1168, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33354971

RESUMEN

Recent studies on the structure and transport behaviors of water confined within lamellar graphene have attracted intense interest in filtration technology, but the mechanism of water transport in complex membrane nanostructures remains an open question. For example, similar systems but at much larger scales have indicated that the instabilities of an elastic structure, such as snap-through, play an essential role in controlling the fluid flow. Graphene sheets, which have an atomic thickness, often appear highly wrinkled in nanofluidic devices and so are vulnerable to elastic instabilities. However, it remains unclear how does the flexible wrinkled structure affect the transport of water and filtration efficiency or whether such an effect can be exploited in devices. In this work, we explore the flow-induced snap-through in graphene nanochannels by combining molecular simulations with the theoretical analysis. We further demonstrate its applications to passive control of fluid flow and to ion/molecule selection. By introducing a flexible arch embedded within a graphene nanochannel, we observe the "snap" of the arched graphene wall from one stable state to another by varying the fluid flux (i.e., velocity); the critical velocity of this snap transition is found to depend nonmonotonically on the geometric size of the channel and the arch. We also demonstrate reversible snap-through by fixing the end parts of the flexible arch. These results suggest the potential of flow-induced snap-through in graphene-based nanochannels for ion/molecule selection applications in, for example, the design of a foul-resistant, easy-to-clean, reusable filter membrane.

9.
Molecules ; 25(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32527028

RESUMEN

The sensing of chromium(VI) (Cr(VI)) is highly desired, due to its toxic and carcinogenic effects upon human health. Fluorescent probes, especially carbon nanodots (CNDs), have been widely used for Cr(VI) sensing via the inner filter effect (IFE). However, improving the sensitivity of these probes remains a difficult issue. In this work, CNDs derived from ß-Lactoglobulin were applied as an ultrasensitive fluorescent probe for Cr(VI). With 260 nm excitation, the CNDs showed multi-band emission, including an ultraviolet 360 nm peak. The spectral matching of the CNDs with Cr(VI) led to synergistic suppression of both the excitation and emission light in the fluorescent sensing. As a consequence, the CNDs showed high sensitivity toward Cr(VI), the detection limit reaching as low as 20 nM. Moreover, taking advantage of the multi-emissive property of the CNDs, the synergistic effect was proven in an IFE-based sensing system, which might be extended to the design of other kinds of fluorescent probes.


Asunto(s)
Carbono/química , Cromo/análisis , Fluorescencia , Colorantes Fluorescentes/química , Nanoestructuras/química , Puntos Cuánticos , Rayos Ultravioleta , Cromo/aislamiento & purificación
10.
Plant Direct ; 4(12): e00295, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33392436

RESUMEN

Among the various abiotic stresses, water and nitrogen are major stress factors that limit crop productivity worldwide. Since leaf nutrients remobilization during leaf senescence might impact response to abiotic stress in crops, we undertook a forward screen of the Mutator-active approach to identify premature senescence loci in maize. A mutant line isolated from a cross between a Pioneer Brand elite line and a public Mutator-active material, designated premature senescence2 (pre2), expressed leaf senescence during flower initiation. The Pre2 gene encodes PHYTOCHROME-DEPENDENT LATE-FLOWERING (PHL) protein, a nuclear receptor coactivator. The pre2-1 mutant allele was not a null mutation but produced a functional wild-type transcript along with multiple mRNA species of varying lengths resulting from the alternate splicing of the Pre2 gene. The PHL accelerates flowering by suppressing the inhibitory effect of phyB on flowering in Arabidopsis (Endo et al., 2013). The ZmPRE2 polypeptide is highly conserved in plant species and has two identifiable motifs namely SPT20 and MED15. The Spt20 domain, which is a part of the SAGA (Spt-Ada-Gcn5 acetyltransferase) complex, is involved in histone deacetylation and MED15 proteins have nuclear functions in mediating DNA Pol II transcription. The differential spliced mature transcripts in both the pre2 alleles, as a result of transposon interference, were producing truncated proteins that lacked polyglutamine (Q) tract near the C-terminus and might be causative of the premature senescence phenotype in maize. Endogenous gene suppression of ZmPre2 by RNAi improves maize agronomic performance under both water stress and suboptimal nitrogen conditions. The homozygous T-DNA knockout of the pre2 homolog in Arabidopsis (At1G72390; the same insertional allele used by Endo et al., 2013) results in higher biomass, delayed maturity, enhanced tolerance to drought, and improved nitrogen utilization efficiency. The Arabidopsis mutant also showed hypersensitive response to 1 µM ABA (abscisic acid) concentration. These results indicate that the PHL protein plays a direct or indirect role in ABA-dependent drought and N signaling pathways.

11.
Plant Physiol ; 181(3): 1127-1147, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31492738

RESUMEN

Stalk lodging in maize (Zea mays) causes significant yield losses due to breaking of stalk tissue below the ear node before harvest. Here, we identified the maize brittle stalk4 (bk4) mutant in a Mutator F2 population. This mutant was characterized by highly brittle aerial parts that broke easily from mechanical disturbance or in high-wind conditions. The bk4 plants displayed a reduction in average stalk diameter and mechanical strength, dwarf stature, senescence at leaf tips, and semisterility of pollen. Histological studies demonstrated a reduction in lignin staining of cells in the bk4 mutant leaves and stalk, and deformation of vascular bundles in the stalk resulting in the loss of xylem and phloem tissues. Biochemical characterization showed a significant reduction in p-coumaric acid, Glc, Man, and cellulose contents. The candidate gene responsible for bk4 phenotype is Chitinase-like1 protein (Ctl1), which is expressed at its highest levels in elongated internodes. Expression levels of secondary cell wall cellulose synthase genes (CesA) in the bk4 single mutant, and phenotypic observations in double mutants combining bk4 with bk2 or null alleles for two CesA genes, confirmed interaction of ZmCtl1 with CesA genes. Overexpression of ZmCtl1 enhanced mechanical stalk strength without affecting plant stature, senescence, or fertility. Biochemical characterization of ZmCtl1 overexpressing lines supported a role for ZmCtl1 in tensile strength enhancement. Conserved identity of CTL1 peptides across plant species and analysis of Arabidopsis (Arabidopsis thaliana) ctl1-1 ctl2-1 double mutants indicated that Ctl1 might have a conserved role in plants.


Asunto(s)
Quitinasas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/metabolismo , Zea mays/enzimología , Zea mays/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Quitinasas/genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/fisiología , Resistencia a la Tracción/fisiología , Zea mays/fisiología
12.
ACS Appl Mater Interfaces ; 10(43): 37014-37022, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30286295

RESUMEN

Selective transport of liquids is an important process in the energy and environment industry. The increased energy consumption and the demands of clean water and fossil fuels have urged the development of high-performance membrane technologies. Nanoscale channels with the critical size for molecular sieving and atomistically smooth walls for significant boundary slippage are highly promising to balance the tradeoff between permeability and selectivity. In this work, we explore the molecular structures and dynamics of organic solvents and water, which are confined within nanoscale two-dimensional galleries between graphene or graphene oxide sheets. Molecular dynamics simulation results show that the layered order and significant interfacial slippage are universal for all molecular liquids, leading to notable flow enhancement for channels with a width of few nanometers, in the order of ethylene glycol > butanol > ethanol > hexane > toluene > water > acetone. The extracted dependence of permeability, selectivity on the channel width, and properties of molecular liquids clarify the underlying mechanisms of selective mass transport in nanofluidics, which help to understand and control the filtration and separation processes of molecular liquids. The performance of graphene oxide membranes for permeation and filtration is finally discussed based on the calculated flow resistance for pressure-driven flow or molecular diffusivity for diffusive flow, as well as the solubility and wettability of membranes.

13.
Nat Nanotechnol ; 13(3): 238-245, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29292381

RESUMEN

Superfast water transport discovered in graphitic nanoconduits, including carbon nanotubes and graphene nanochannels, implicates crucial applications in separation processes and energy conversion. Yet lack of complete understanding at the single-conduit level limits development of new carbon nanofluidic structures and devices with desired transport properties for practical applications. Here, we show that the hydraulic resistance and slippage of single graphene nanochannels can be accurately determined using capillary flow and a novel hybrid nanochannel design without estimating the capillary pressure. Our results reveal that the slip length of graphene in the graphene nanochannels is around 16 nm, albeit with a large variation from 0 to 200 nm regardless of the channel height. We corroborate this finding with molecular dynamics simulation results, which indicate that this wide distribution of the slip length is due to the surface charge of graphene as well as the interaction between graphene and its silica substrate.

14.
ACS Nano ; 11(11): 11152-11161, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29068657

RESUMEN

Recent experimental studies have revealed unconventional phase and transport behaviors of water confined within lamellar graphene oxide membranes, which hold great promise not only in improving our current understanding of nanoconfined water but also in developing high-performance filtration and separation applications. In this work, we explore molecular structures and diffusive dynamics of water intercalated between graphene or graphene oxide sheets. We identify the monolayer structured water between graphene sheets at temperature T below Tc = ∼315 K and an interlayer distance d = 0.65 nm, which is absent as the sheets are oxidized. The non-continuum collective diffusion of water intercalation between graphene layers facilitates fast molecular transport due to reduced wall friction. This solid-like structural order of intercalated water is disturbed as T or d increases to a critical value, with abnormal declines in the coefficients of collective diffusion. Based on a patched model of graphene oxide sheets consisting of spatially distributed pristine and oxidized regions, we conclude that the non-continuum collective diffusion of intercalated water can explain fast water permeation through graphene oxide membranes as reported in recent experimental studies, in stark contrast to the conventional picture of pressure-driven continuum flow with boundary slip, which has been widely adopted in literature but may apply only at high humidity or in the fully hydrated conditions.

15.
Sci Rep ; 7(1): 2646, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28572635

RESUMEN

Understanding phase behaviors of nanoconfined water has driven notable research interests recently. In this work, we examine water encapsulated under a graphene cover that offers an ideal testbed to explore its molecular structures and thermodynamics. We find layered water structures for up to ~1000 trapped water molecules, which is stabilized by the spatial confinement and pressure induced by interfacial adhesion. For monolayer encapsulations, we identify representative two-dimensional crystalline lattices as well as defects therein. Free energy analysis shows that the structural orders with low entropy are compensated by high formation energies due to the pressurized confinement. There exists an order-to-disorder transition for this condensed phase at ~480-490 K, with a sharp reduction in the number of hydrogen bonds and increase in the entropy. Fast diffusion of the encapsulated water demonstrates anomalous temperature dependence, indicating the solid-to-fluid nature of this structural transition. These findings offer fundamental understandings of the encapsulated water that can be used as a pressurized cell with trapped molecular species, and provide guidance for practical applications with its presence, for example, in the design of nanodevices and nanoconfined reactive cells.

16.
Adv Mater ; 28(45): 10055-10060, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27690280

RESUMEN

Monolayer MoS2 can effectively screen the vdW interaction of underlying substrates with external systems by >90% because of the substantial increase in the separation between the substrate and external systems due to the presence of the monolayer. This substantial screening of vdW interactions by MoS2 monolayer is different from what reported at graphene.

17.
ACS Appl Mater Interfaces ; 7(17): 9052-9, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25868398

RESUMEN

Designing membrane materials from one-atom-thick structures is highly promising in separation and filtration applications for the reason that they offer the ultimate precision in modifying the atomic structures and chemistry for optimizing performance, and thus resolving the permeation-selectivity trade-off. In this work, we explore the molecular dynamics of gas diffusion in the gallery space between functionalized graphene layers as well as within nanopores across the multilayers. We have identified highly selective gas permeation that agrees with recent experimental measurements and is promising for advancing gas separation technologies such as hydrogen separation, helium/nitrogen generation, and CO2 sequestration. The roles of structural and chemical factors are discussed by considering different types of gases including H2, He, CH4, N2, O2, CO, CO2, and H2O. The overall performance of graphene oxide membranes is also discussed with respect to their microstructures, and compared with recent experimental measurements. These understandings could advise high-performance gas-separation membrane development by engineering assemblies of two-dimensional layered structures.

18.
Zhong Xi Yi Jie He Xue Bao ; 2(5): 364-5, 2004 Sep.
Artículo en Chino | MEDLINE | ID: mdl-15383261

RESUMEN

OBJECTIVE: To study the anti-lipid peroxidation action of Rosa davurica Pall. fruit. METHODS: The contents of malondialdehyde (MDA) of the tissue homogenate of the liver, heart, kidney, brain and of the red blood cells induced by hydrogen peroxide in mice were measured. The contents of MDA and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of ischemic myocardium of mice were measured. RESULTS: 0.2 g/L Rosa davurica Pall. fruit could decrease significantly the contents of MDA of the all tissue (P < 0.05). Inhibition rate of 6.7 g/L Rosa davurica Pall. fruit on MDA of the red blood cells induced by hydrogen peroxide was 89.2%. Administration of this extraction successively for six days (ig, 2.0 g x kg(-1) x d(-1)) can significantly reduce the content of MDA (P < 0.01) and augment the activities of SOD and GHS-Px (P < 0.05) in the ischemic myocardium of mice. CONCLUSION: Rosa davurica Pall. fruit can significantly prevent the lipid peroxidation.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Frutas/química , Peroxidación de Lípido/efectos de los fármacos , Rosa , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ácido Ditionitrobenzoico , Femenino , Glutatión/análisis , Glutatión/metabolismo , Glutatión Peroxidasa/análisis , Glutatión Peroxidasa/metabolismo , Corazón/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Malondialdehído/análisis , Malondialdehído/metabolismo , Ratones , Miocardio/metabolismo , Distribución Aleatoria , Reactivos de Sulfhidrilo , Superóxido Dismutasa/análisis , Superóxido Dismutasa/metabolismo
19.
Plant Physiol ; 132(3): 1228-40, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12857805

RESUMEN

Cytokinins are hormones that play an essential role in plant growth and development. The irreversible degradation of cytokinins, catalyzed by cytokinin oxidase, is an important mechanism by which plants modulate their cytokinin levels. Cytokinin oxidase has been well characterized biochemically, but its regulation at the molecular level is not well understood. We isolated a cytokinin oxidase open reading frame from maize (Zea mays), called Ckx1, and we used it as a probe in northern and in situ hybridization experiments. We found that the gene is expressed in a developmental manner in the kernel, which correlates with cytokinin levels and cytokinin oxidase activity. In situ hybridization with Ckx1 and transgenic expression of a transcriptional fusion of the Ckx1 promoter to the Escherichia coli beta-glucuronidase reporter gene revealed that the gene is expressed in the vascular bundles of kernels, seedling roots, and coleoptiles. We show that Ckx1 gene expression is inducible in various organs by synthetic and natural cytokinins. Ckx1 is also induced by abscisic acid, which may control cytokinin oxidase expression in the kernel under abiotic stress. We hypothesize that under non-stress conditions, cytokinin oxidase in maize plays a role in controlling growth and development via regulation of cytokinin levels transiting in the xylem. In addition, we suggest that under environmental stress conditions, cytokinin oxidase gene induction by abscisic acid results in aberrant degradation of cytokinins therefore impairing normal development.


Asunto(s)
Ácido Abscísico/farmacología , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oxidorreductasas/metabolismo , Zea mays/efectos de los fármacos , Zea mays/enzimología , Alelos , Citocininas/metabolismo , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Hibridación in Situ , Oxidorreductasas/genética , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Factores de Tiempo , Activación Transcripcional , Zea mays/genética , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...