Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 14853, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684287

RESUMEN

The young bamboo shoot of Bambusa oldhamii (green bamboo) has a good taste and is rich in nutrition and widely used in traditional Chinese cuisines. But the shoots flavor of Bambusa oldhamii changed from deliciously sweet to a little bitter when the shoots grew from underground to aboveground. In this paper, we explored the bitterness chemicals of the green bamboo shoot when growing from underground to aboveground using transcriptome and metabolome techniques. Finally, several bitter chemicals were mined out counting for the flavor transformation, such as Solanidine, Amygdalin, Salicin, Arbutin, and others. The transcription factor family of AP2/ERF plays the main role in key bitter chemical regulation via correlation analysis. Moreover, the pathway of Biosynthesis of phenylpropanoids might be the key pathway in the formation of the bitter chemicals in green bamboo shoot development.


Asunto(s)
Bambusa , Gusto , Transcriptoma , Perfilación de la Expresión Génica , Metabolómica
2.
Front Oncol ; 12: 888695, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860568

RESUMEN

In this study, we demonstrated that the expression of FK506 binding protein 51 (FKBP51) is upregulated in acute monocytic leukemia (AML-M5) cells by dexamethasone and aimed to investigate the possible effects of FKBP51 on the growth and cytarabine sensitivity of AML-M5 cells. THP-1 and U937cells were used to establish AML-M5 cell models with FKBP51 overexpression and knockdown, respectively. Cell proliferation, apoptosis and response to cytarabine were investigated by cell cycle, CCK-8 and Flow cytometry analyses. The mice experiment was conducted to detect the role of FKBP51 on AML-M5 cells proliferation and antileukemia effect of Ara-C/Dexamethasone co-therapy in vivo. Western blots were employed to determine protein expression levels. FKBP51 upregulation significantly attenuated THP-1 cell proliferation and sensitized the cells to cytarabine treatment which was further enhanced by dexamethasone. These effects were indicated by decreases in cell viability, S-G2/M phase cell cycle distribution, cytarabine 50% inhibitory concentration (IC50) values and increases in apoptosis and were supported by decreased phosphorylation levels of AKT, GSK3ß and FOXO1A and decreased levels of BCL-2 and increased levels of P21 and P27. In contrast, FKBP51 knockdown led to excessive U937 cell proliferation and cytarabine resistance, as indicated by increased cell viability and S-G2/M phase cell cycle distribution, decreased apoptosis, increased phosphorylation levels of AKT, GSK3ß and FOXO1A, and increased BCL-2 and decreased P21 and P27 expression. In addition, an AKT inhibitor blocked cell cycle progression and reduced cell viability in all groups of cells. Furthermore, SAFit2, a specific FKBP51 inhibitor, increased U937 cell viability and cytarabine resistance as well as AKT phosphorylation. In conclusion, FKBP51 decelerates proliferation and improves the cytarabine sensitivity of AML-M5 cells by inhibiting AKT pathways, and dexamethasone in combination with Ara-C improves the chemosensitivity of AML-M5.

3.
Front Immunol ; 13: 837336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309301

RESUMEN

Although the variation in chromatin architecture during adaptive immune responses has been thoroughly investigated, the 3D landscape of innate immunity is still unknown. Herein, chromatin regulation and heterogeneity among human primary monocytes were investigated. Peripheral blood was collected from two healthy persons and two patients with systemic lupus erythematosus (SLE), and CD14+ monocytes were selected to perform Hi-C, RNA-seq, ATAC-seq and ChIP-seq analyses. Raw data from the THP1 cell line Hi-C library were used for comparison. For each sample, we constructed three Hi-C libraries and obtained approximately 3 billion paired-end reads in total. Resolution analysis showed that more than 80% of bins presented depths greater than 1000 at a 5 kb resolution. The constructed high-resolution chromatin interaction maps presented similar landscapes in the four individuals, which showed significant divergence from the THP1 cell line chromatin structure. The variability in chromatin interactions around HLA-D genes in the HLA complex region was notable within individuals. We further found that the CD16-encoding gene (FCGR3A) is located at a variable topologically associating domain (TAD) boundary and that chromatin loop dynamics might modulate CD16 expression. Our results indicate both the stability and variability of high-resolution chromatin interaction maps among human primary monocytes. This work sheds light on the potential mechanisms by which the complex interplay of epigenetics and spatial 3D architecture regulates chromatin in innate immunity.


Asunto(s)
Cromatina , Monocitos , Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina , Cromosomas , Epigénesis Genética , Humanos
4.
PeerJ ; 10: e12796, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35070510

RESUMEN

BACKGROUND: The clumping bamboo Bambusa oldhamii Munro, known as "green bamboo", is famous for its edible bamboo shoots and fast-growing timber. The green and yellow striped-culm B. oldhamii variety, named B. oldhamii f. revoluta W.T. Lin & J. Y. Lin, is an attractive system for researching the culm color variation of B. oldhamii. METHODS: Millions of clean reads were generated and assembled into 604,900 transcripts, and 383,278 unigenes were acquired with RNA-seq technology. The quantification of ABA, IAA, JA, GA1, GA3, GA4, and GA7 was performed using HPLC-MS/MS platforms. RESULTS: Differential expression analysis showed that 449 unigenes were differentially expressed genes (DEGs), among which 190 DEGs were downregulated and 259 DEGs were upregulated in B. oldhamii f. revoluta. Phytohormone contents, especially GA1 and GA7, were higher in B. oldhamii. Approximately 21 transcription factors (TFs) were differentially expressed between the two groups: the bZIP, MYB, and NF-YA transcription factor families had the most DEGs, indicating that those TFs play important roles in B. oldhamii culm color variation. RNA-seq data were confirmed by quantitative RT-PCR analysis of the selected genes; moreover, phytohormone contents, especially those of ABA, GA1 and GA7, were differentially accumulated between the groups. Our study provides a basal gene expression and phytohormone analysis of B. oldhamii culm color variation, which could provide a solid fundamental theory for investigating bamboo culm color variation.


Asunto(s)
Bambusa , Bambusa/genética , Reguladores del Crecimiento de las Plantas/metabolismo , RNA-Seq , Espectrometría de Masas en Tándem , Factores de Transcripción/genética
5.
Cell Death Dis ; 12(6): 602, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112753

RESUMEN

FKBP4 belongs to the family of immunophilins, which serve as a regulator for steroid receptor activity. Thus, FKBP4 has been recognized to play a critical role in several hormone-dependent cancers, including breast and prostate cancer. However, there is still no research to address the role of FKBP4 on lung adenocarcinoma (LUAD) progression. We found that FKBP4 expression was elevated in LUAD samples and predicted significantly shorter overall survival based on TCGA and our cohort of LUAD patients. Furthermore, FKBP4 robustly increased the proliferation, metastasis, and invasion of LUAD in vitro and vivo. Mechanistic studies revealed the interaction between FKBP4 and IKK kinase complex. We found that FKBP4 potentiated IKK kinase activity by interacting with Hsp90 and IKK subunits and promoting Hsp90/IKK association. Also, FKBP4 promotes the binding of IKKγ to IKKß, which supported the facilitation role in IKK complex assembly. We further identified that FKBP4 TPR domains are essential for FKBP4/IKK interaction since its association with Hsp90 is required. In addition, FKBP4 PPIase domains are involved in FKBP4/IKKγ interaction. Interestingly, the association between FKBP4 and Hsp70/RelA favors the transport of RelA toward the nucleus. Collectively, FKBP4 integrates FKBP4/Hsp90/IKK with FKBP4/Hsp70/RelA complex to potentiate the transcriptional activity and nuclear translocation of NF-κB, thereby promoting LUAD progression. Our findings suggest that FKBP4 may function as a prognostic biomarker of LUAD and provide a newly mechanistic insight into modulating IKK/NF-κB signaling.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Proteínas de Unión a Tacrolimus/fisiología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Células HEK293 , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Quinasa I-kappa B/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción ReIA/metabolismo
6.
Nat Commun ; 11(1): 1675, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245969

RESUMEN

The laurel family within the Magnoliids has attracted attentions owing to its scents, variable inflorescences, and controversial phylogenetic position. Here, we present a chromosome-level assembly of the Litsea cubeba genome, together with low-coverage genomic and transcriptomic data for many other Lauraceae. Phylogenomic analyses show phylogenetic discordance at the position of Magnoliids, suggesting incomplete lineage sorting during the divergence of monocots, eudicots, and Magnoliids. An ancient whole-genome duplication (WGD) event occurred just before the divergence of Laurales and Magnoliales; subsequently, independent WGDs occurred almost simultaneously in the three Lauralean lineages. The phylogenetic relationships within Lauraceae correspond to the divergence of inflorescences, as evidenced by the phylogeny of FUWA, a conserved gene involved in determining panicle architecture in Lauraceae. Monoterpene synthases responsible for production of specific volatile compounds in Lauraceae are functionally verified. Our work sheds light on the evolution of the Lauraceae, the genetic basis for floral evolution and specific scents.


Asunto(s)
Cromosomas de las Plantas/genética , Evolución Molecular , Especiación Genética , Genoma de Planta , Litsea/genética , Vías Biosintéticas/genética , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Duplicación de Gen , Perfilación de la Expresión Génica , Genómica , Inflorescencia/genética , Litsea/metabolismo , Anotación de Secuencia Molecular , Odorantes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN
7.
BMC Bioinformatics ; 20(Suppl 25): 687, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31874613

RESUMEN

BACKGROUND: Bamboo is a very important forest resource. However, the prolonged vegetative stages and uncertainty of flowering brings difficulties in bamboo flowers sampling. Until now, the flowering mechanism of bamboo is still unclear. RESULTS: In this study, three successive stages of flowering buds and the corresponding vegetative buds (non-flowering stage) from Lei bamboo (Phyllostachys violascens) were collected for transcriptome analysis using Illumina RNA-Seq method. We generated about 442 million clean reads from the above samples, and 132,678 unigenes were acquired with N50 of 1080 bp. A total of 7266 differentially expressed genes (DEGs) were determined. According to expression profile and gene function analysis, some environmental stress responsive and plant hormone-related DEGs were highly expressed in the inflorescence meristem formation stage (TF_1) while some floral organ development related genes were up-regulated significantly in floral organs determination stage (TF_2) and floral organs maturation (TF_3) stage, implying the essential roles of these DEGs in flower induction and maturation of Lei bamboo. Additionally, a total of 25 MADS-box unigenes were identified. Based on the expression profile, B, C/D and E clade genes were more related to floral organs development compared with A clade genes in Lei bamboo. CONCLUSIONS: This transcriptome data presents fundamental information about the genes and pathways involved in flower induction and development of Lei bamboo. Moreover, a critical sampling method is provided which could be benefit for bamboo flowering mechanism study.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Poaceae/genética , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/clasificación , Proteínas de Dominio MADS/genética , Filogenia , Poaceae/crecimiento & desarrollo , ARN de Planta/química , ARN de Planta/genética , ARN de Planta/metabolismo , RNA-Seq
8.
G3 (Bethesda) ; 9(12): 4139-4147, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31615834

RESUMEN

Litsea cubeba (Lour.) Pers. (mountain pepper, Lauraceae) is an important woody essential oil crop that produces fragrant oils in its fruits, especially in its peels. Identification of genes involved in the regulation of fruits and peel architecture is of economic significance for L. cubeba industry. It has been well known that the MADS-box genes are essential transcription factors that control flowers and fruits development. Here, we obtained 33 MADS-box genes first from the RNA-seq data in L. cubeba, and 27 of these genes were of the MIKC-type. LcMADS20, an AGAMOUS-like gene, was highly expressed in the developing stages of fruits, particularly at 85 days after full bloom. The ectopic expression of LcMADS20 in Arabidopsis resulted in not only curved leaves, early flowering and early full-opened inflorescences, but also shorter siliques and decreased percentage of peel thickness. Moreover, in the LcMADS20 transgenic Arabidopsis, the expression modes of several intrinsic ABC model class genes were influenced, among which the expression of FUL was significantly reduced and AP3, AG, and STK were significantly increased. This study systematically analyzed the MADS-box genes in L. cubeba at the transcriptional level and showed that LcMADS20 plays important roles in the regulation of fruit architecture.


Asunto(s)
Expresión Génica Ectópica , Regulación de la Expresión Génica de las Plantas , Litsea/anatomía & histología , Litsea/genética , Proteínas de Plantas/genética , Semillas/anatomía & histología , Secuencias de Aminoácidos , Arabidopsis/genética , Secuencia Conservada , Flores/genética , Flores/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Fenotipo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
9.
J Cell Mol Med ; 23(7): 4699-4710, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31050196

RESUMEN

Endometrioid endometrial carcinoma (EEC) is the most common gynaecologic malignancy worldwide. Long non-coding RNAs have previously been demonstrated to play important roles in regulating human diseases, particularly cancer. However, the biological functions and molecular mechanisms of long non-coding RNAs in EEC have not been extensively studied. Here, we describe the discovery of Lnc-NA from the promoter of the transcription factor nuclear receptor subfamily 4 group A member 1 (NR4A1) gene. The role and function of Lnc-NA in EEC remain unknown. In this study, we used quantitative real-time polymerase chain reactions to confirm that Lnc-NA expression was down-regulated in 30 EEC cases (90%) and in EEC cell lines compared with that in the paired adjacent tissues and normal endometrial cells. In vitro experiments further demonstrated that overexpressing Lnc-NA decreased EEC cell proliferation, migration and invasion and promoted apoptosis via inactivation of the apoptosis signalling pathway. Moreover, the results show that Lnc-NA expression was positively correlated with NR4A1. Furthermore, Lnc-NA regulated NR4A1 expression and activated the apoptosis signalling pathway to inhibit tumour progression. In summary, our results demonstrate that the Lnc-NA-NR4A1 axis could be a useful tumour suppressor and a promising therapeutic target for EEC.


Asunto(s)
Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patología , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , ARN Largo no Codificante/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Modelos Biológicos , Invasividad Neoplásica , Metástasis de la Neoplasia , Fenotipo , Transducción de Señal
10.
G3 (Bethesda) ; 8(4): 1103-1114, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29487185

RESUMEN

BACKGROUND: Litsea cubeba (Lour.) Pers. is an important economic plant that is rich in valuable essential oil. The essential oil is often used as a raw material for perfumes, food additives, insecticides and bacteriostats. Most of the essential oil is contained in the fruit, and the quantity and quality of fruit are dependent on the flowers. To explore the molecular mechanism of floral bud differentiation, high-throughput RNA sequencing was used to detect differences in the gene expression of L. cubeba female and male floral buds at three differentiation stages. RESULTS: This study obtained 160.88 Gbp of clean data that were assembled into 100,072 unigenes, and a total of 38,658 unigenes were annotated. A total of 27,521 simple sequence repeats (SSRs) were identified after scanning the assembled transcriptome, and the mono-nucleotide repeats were predominant, followed by di-nucleotide and tri-nucleotide repeats. A total of 12,559 differentially expressed genes (DEGs) were detected from the female (F) and male (M) floral bud comparisons. The gene ontology (GO) databases revealed that these DEGs were primarily contained in "metabolic processes", "cellular processes", and "single-organism processes". The Kyoto Encyclopedia of Genes and Genomes (KEGG) databases suggested that the DEGs belonged to "plant hormone signal transduction" and accounted for a relatively large portion in all of these comparisons. We analyzed the expression level of plant hormone-related genes and detected the contents of several relevant plant hormones in different stages. The results revealed that the dynamic changes in each hormone content were almost consistent with the expression levels of relevant genes. The transcription factors selected from the DEGs were analyzed. Most DEGs of MADS-box were upregulated and most DEGs of bZIP were downregulated. The expression trends of the DEGs were nearly identical in female and male floral buds, and qRT-PCR analysis revealed consistency with the transcriptome data. CONCLUSIONS: We sequenced and assembled a high-quality L. cubeba floral bud transcriptome, and the data appeared to be well replicated (n = 3) over three developmental time points during flower development. Our study explored the changes in the contents of several plant hormones during floral bud differentiation using biochemical and molecular biology techniques, and the changes in expression levels of several flower development related transcription factors. These results revealed the role of these factors (i.e., hormones and transcription factors) and may advance our understanding of their functions in flower development in L. cubeba.


Asunto(s)
Diferenciación Celular , Flores/citología , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Litsea/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Repeticiones de Microsatélite/genética , Anotación de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN , Transcriptoma/genética
11.
Reproduction ; 155(3): 283-295, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29363568

RESUMEN

Defective decidualization of human endometrial stromal cells (ESCs) has recently been highlighted as an underlying cause of implantation failure. FK-506-binding protein 51 (FKBP51) has been shown to participate in the steroid hormone response and the protein kinase B (AKT) regulation process, both of which are important pathways involved in decidualization. The objective of the present study was to investigate the potential effects and mechanisms of FKBP51 in the regulation of ESC decidualization. By performing immunohistochemical staining on an endometrial tissue microarray (TMA) derived from normal females, we found that FKBP51 expression was much higher in the luteal phase than in the follicular phase in ESCs. Primary ESCs were isolated from patients to build an in vitro decidualization model through co-culture with medroxyprogesterone acetate (MPA) and 8-bromoadenosine (cAMP). SC79, a specific AKT activator in various physiological and pathological conditions, and shRNA-FKBP51 were used to examine the roles of AKT and FKBP51 in decidualization. The Western blot and RT-PCR results showed that FKBP51, insulin-like growth factor-binding protein 1 (IGFBP1) and prolactin (PRL) expression increased in ESCs treated with MPA + cAMP; meanwhile, the level of p-Ser473 AKT (p-S473 AKT) decreased and forkhead box protein O1 (FOXO1A) expression increased. Decidualization was inhibited by the AKT activator SC79 and the transfection of FKBP51-shRNA by affecting protein synthesis, cell morphology, cell growth and cell cycle. Furthermore, this inhibition was rescued by FKBP51-cDNA transfection. The results supported that FKBP51 promotes decidualization by reducing the Ser473 phosphorylation levels in AKT.


Asunto(s)
Decidua/patología , Endometrio/patología , Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina/metabolismo , Células del Estroma/patología , Proteínas de Unión a Tacrolimus/metabolismo , Adulto , Proliferación Celular , Células Cultivadas , Decidua/metabolismo , Endometrio/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Fosforilación , Células del Estroma/metabolismo
12.
Oncotarget ; 8(46): 80405-80415, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-29113312

RESUMEN

In this study, we investigated the role of FK506 binding protein 51 (FKBP51) in human endometrial adenocarcinoma progression. Immunohistochemical analysis showed decreased FKBP51 expression in endometrial adenocarcinoma tissues. Moreover, higher FKBP51 expression was observed in the normal secretory phase than in proliferative-phase endometrial tissues. FKBP51-shRNA transfected KLE cells showed high Ser473-phospho Akt with decreased p21 and p27 levels, which promoted S-G2/M phase cell cycle progression and proliferation. Conversely, FKBP51 overexpressing Ishikawa cells showed low Ser473-phospho Akt, which led to increased p21 and p27 levels and, in turn, G0/G1 cell cycle arrest and decreased cell proliferation. FKBP51 overexpression in progesterone receptor-positive Ishikawa cells sensitized them to medroxyprogesterone acetate (MPA; progestin) treatment by repressing Akt signaling. Conversely, FKBP51-shRNA knockdown in RL95-2 cells attenuated progestin sensitivity. These findings indicate FKBP51 inhibits cell proliferation and promotes progestin sensitivity in endometrial adenocarcinoma by decreasing Akt signaling.

13.
Exp Mol Med ; 49(5): e336, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28524179

RESUMEN

Paget's disease of bone (PDB) is a common metabolic bone disease that is characterized by aberrant focal bone remodeling, which is caused by excessive osteoclastic bone resorption followed by disorganized osteoblastic bone formation. Genetic factors are a critical determinant of PDB pathogenesis, and several susceptibility genes and loci have been reported, including SQSTM1, TNFSF11A, TNFRSF11B, VCP, OPTN, CSF1 and DCSTAMP. Herein, we report a case of Chinese familial PDB without mutations in known genes and identify a novel c.163G>C (p.Val55Leu) mutation in FKBP5 (encodes FK506-binding protein 51, FKBP51) associated with PDB using whole-exome sequencing. Mutant FKBP51 enhanced the Akt phosphorylation and kinase activity in cells. A study of osteoclast function using FKBP51V55L KI transgenic mice proved that osteoclast precursors from FKBP51V55L mice were hyperresponsive to RANKL, and osteoclasts derived from FKBP51V55L mice displayed more intensive bone resorbing activity than did FKBP51WT controls. The osteoclast-specific molecules tartrate-resistant acid phosphatase, osteoclast-associated receptor and transcription factor NFATC1 were increased in bone marrow-derived monocyte/macrophage cells (BMMs) from FKBP51V55L mice during osteoclast differentiation. However, c-fos expression showed no significant difference in the wild-type and mutant groups. Akt phosphorylation in FKBP51V55L BMMs was elevated in response to RANKL. In contrast, IκB degradation, ERK phosphorylation and LC3II expression showed no difference in wild-type and mutant BMMs. Micro-CT analysis revealed an intensive trabecular bone resorption pattern in FKBP51V55L mice, and suspicious osteolytic bone lesions were noted in three-dimensional reconstruction of distal femurs from mutant mice. These results demonstrate that the mutant FKBP51V55L promotes osteoclastogenesis and function, which could subsequently participate in PDB development.


Asunto(s)
Mutación Missense , Osteítis Deformante/genética , Osteoclastos/metabolismo , Proteínas de Unión a Tacrolimus/genética , Adolescente , Adulto , Anciano , Animales , Resorción Ósea , Línea Celular Tumoral , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Factores de Transcripción NFATC/metabolismo , Osteítis Deformante/patología , Osteoclastos/citología , Linaje , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ligando RANK/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo
14.
Viral Immunol ; 30(1): 35-44, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27976981

RESUMEN

Hepatitis B virus (HBV) e (HBe) antigen is a nonstructural virus component with great immune regulation roles. It regulates adaptive immunity response and participates in persistent infection development. However, its roles on monocytes and B lymphocytes were rarely studied. Herein, we studied HBe roles on U937 and Hmy2.CIR by creating HBe stably transfected cells using lentivirus. We detected the motility of HBe-U937 through transwell migration assay. Cytokines that primarily produced by monocytes, including BAFF, B-cell activating factor (BAFF), interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and A proliferation inducing ligand (APRIL), were measured in culture supernatants of transfected U937, and serum BAFF, IL-6, and IL-10 were detected in HBe-positive and HBe-negative HBV-infected patients. Among these, BAFF mRNA and membrane-bound BAFF were further detected. Activation and inhibition markers of B lymphocytes on HBe-Hmy2.CIR and proliferation of transfected Hmy2.CIR after coculture with transfected U937 were also detected. We found that U937 migration was inhibited by HBe. BAFF expression was increased in HBe-U937, however, membrane-bound BAFF on HBe-U937 was decreased. In addition, Serum BAFF in HBe-positive patients was higher than in HBe-negative patients. IL-6 and IL-10 were increased in HBe-U937 after being stimulated by lipopolysaccharide (LPS), however, serum IL-6 and IL-10 were not associated with HBe status in patients. Besides, TNF-α and APRIL expression were basically the same in GV166-U937 and HBe-U937. B lymphocyte activation markers CD86 and Tspan33 were raised in HBe-Hmy2.CIR. However, inhibition markers Lyn and CD32b had no differences between HBe-Hmy2.CIR and control. Proliferation of transfected Hmy2.CIR was not affected by coculture with transfected U937, however, HBe transfection itself enhanced Hmy2.CIR proliferation. Altogether, these revealed that HBe can inhibit U937 migration and promote cytokines, including BAFF, IL-6, and IL-10, production in U937. Besides, HBe enhances BAFF release from U937 and increases BAFF concentration in vivo. In addition, HBe antigen facilitates Hmy2.CIR activation and proliferation through direct induction.


Asunto(s)
Linfocitos B/inmunología , Antígenos e de la Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Activación de Linfocitos , Monocitos/inmunología , Línea Celular , Movimiento Celular , Proliferación Celular , Citocinas/metabolismo , Hepatitis B/inmunología , Humanos
15.
Endocr Pract ; 22(8): 935-40, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27042744

RESUMEN

OBJECTIVE: Natural killer (NK) cells serve as primary immune surveillance and are partially regulated by combinations of killer immunoglobulin-like receptors (KIR) and their human leukocyte antigen-C (HLA-C) ligands. Alterations in NK cell activity have been associated with Hashimoto thyroiditis (HT). The aim of this study was to determine whether certain KIR/HLA-C genotype combinations play a role in HT pathogenesis. METHODS: The present study enrolled 107 unrelated HT patients and 108 random healthy individuals in a case-control study. Blood was collected for DNA extraction; typing of KIR genes and HLA-C alleles was performed by polymerase chain reaction with sequence specific primers (PCR-SSP), followed by electrophoresis on agarose gels. RESULTS: Among a panel of KIR2D/HLA-C genotype combinations, the frequency of KIR2DS2/HLA-C1 was significantly increased in HT patients compared to controls (33.64% vs. 12.96%, P<.001). To further analyze the precise genotype, we investigated inhibitory or activating KIR/HLA-C gene pairs when their corresponding activating or inhibitory KIR genes were absent in the 2 groups. Only the frequency of KIR2DS2(-)2DL2/3(+)HLA-C1(+) was significantly decreased in HT patients compared to controls (48.60% vs. 70.37%, P = .001). CONCLUSION: Our data suggest that KIR2DS2/HLA-C1 may correlate with HT pathogenesis. On the contrary, the predominance of KIR2DL2/3/HLA-C1 in the absence of KIR2DS2 suggests a potential inhibitory role in HT pathogenesis. In conclusion, our findings may further elucidate the mechanisms underlying the pathogenesis of HT and other autoimmune diseases. ABBREVIATIONS: HLA-C = human leukocyte antigen-C HT = Hashimoto thyroiditis KIR = killer immunoglobulin-like receptor NK = natural killer PCR = polymerase chain reaction.


Asunto(s)
Antígenos HLA-C/genética , Enfermedad de Hashimoto/genética , Receptores KIR/genética , Adulto , Pueblo Asiatico/genética , Estudios de Casos y Controles , China , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Enfermedad de Hashimoto/inmunología , Humanos , Ligandos , Masculino , Persona de Mediana Edad
16.
Asian Pac J Cancer Prev ; 16(3): 1025-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25735324

RESUMEN

BACKGROUND: Prostate cancer is one of the main causes of cancer death, and drug resistance is the leading reason for therapy failure. However, how this occurs is largely unknown. We therrfore aimed to study the response of DU145 cells to cisplatin. MATERIALS AND METHODS: Du145 prostate cancer cells were treated with a low dose of cisplatin for 24 h and cell viability and number were determined by MTT assay and trypan blue exclusion assay, respectively. The real time polymerase chain reaction (PCR) was used to assess responses to cisplatin treatment. RESULTS: After 24h 2 µg/ml treatment did not result in significant reduction in cell viability or number. However, it led to enhanced cancer cell invasiveness. E-cadherin mRNA was reduced, and vimentin, Snail, Slug, metalloproteinase 9 (MMP9) mRNA expression increased significantly, a feature of epithelial-mesenchymal transition (EMT). CONCLUSIONS: Short time low concentration cisplatin treatment leads to elevated invasiveness of DU145 cancer cells and this is possibly due to EMT.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias de la Próstata/patología , Humanos , Masculino , Invasividad Neoplásica , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
17.
BMC Gastroenterol ; 14: 98, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24885625

RESUMEN

BACKGROUND: This study investigates the effect of glucose on the LPS-induced apoptosis of dendritic cells in the intestinal tract of mice and the dendritic cell line DC2.4. METHODS: Flow cytometry was used to detect dendritic cell apoptosis both in vivo and in vitro. Hoechst 33258 staining was used to detect the morphological changes characteristic of apoptotic nuclei. Expression of apoptosis related proteins was investigated by western blot analysis and immunohistochemistry. RESULTS: Pretreatment with a high concentration of glucose increased apoptosis of LPS-treated dendritic cells both in vivo and in vitro at 24 h. No effect was evident at the earlier time points of 15 min and 6 h in vitro. Furthermore, at 24 hours the expression of the survival proteins AKT, ERK and Bcl-2 was decreased, while the expression of the proapoptotic protein Bax was increased. AKT, ERK, Bcl-2 and Bax were mainly located in the cytoplasm by immunohistochemistry. CONCLUSIONS: These results suggest that high glucose concentrations might prime dendritic cells for apoptosis induced by LPS in the intestinal tract through upregulating the expression of Bax and downregulating the expression of AKT, ERK and Bcl-2. Therefore, this study may give clues to understanding the immunological mechanism behind gastrointestinal complications in diabetes mellitus.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Glucosa/metabolismo , Lipopolisacáridos/farmacología , Proteína Quinasa 1 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/efectos de los fármacos , Proteína X Asociada a bcl-2/efectos de los fármacos , Animales , Apoptosis/fisiología , Western Blotting , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Dendríticas/metabolismo , Diabetes Mellitus/metabolismo , Citometría de Flujo , Hiperglucemia/metabolismo , Inmunohistoquímica , Intestinos/citología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
18.
Lab Invest ; 93(6): 626-38, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23628898

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the formation of immune complexes (ICs), which contain a complex mixture of autoantigens nucleic acids, nucleic acids-associated proteins and corresponding autoantibodies. In SLE, ICs are deposited in multiple organs. Vasculopathy and vasculitis in SLE are typical complications and are associated with deposition of ICs on endothelium, endothelial activation and inflammatory cell infiltration. However, the effects of ICs on endothelial cells and the mechanisms involved remain unclear. In this study, we have demonstrated for the first time that ICs upregulated cell surface expression of the receptor for advanced glycation end products (RAGE), the expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), increased the secretion of the chemokines interleukin 8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), the proinflammatoy cytokines interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and promoted the activation of the transcription factor NF-κB p65 in human endothelial cells (P<0.05). ICs also increased transendothelial migration of monocytes (P<0.05). One of the mechanisms underlying these activating effects of ICs on human endothelial cells involves cell signaling by high-mobility group box 1 protein (HMGB1)-RAGE axis, as these effects can be partially blocked by HMGB1 A-box, soluble RAGE (sRAGE), SB203580, PD98059, Bay 117082 (P<0.05) and co-treatment with these agents (P<0.05). In conclusion, ICs elicit proinflammatory responses in human endothelial cells and alter their function involving cellular signaling via the HMGB1-RAGE axis in the pathogenesis of SLE vasculitis.


Asunto(s)
Complejo Antígeno-Anticuerpo/metabolismo , Endotelio Vascular/inmunología , Proteína HMGB1/metabolismo , Vasculitis por Lupus del Sistema Nervioso Central/inmunología , Supervivencia Celular , Citocinas/metabolismo , Endotelio Vascular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Flavonoides , Humanos , Imidazoles , Molécula 1 de Adhesión Intercelular/metabolismo , Monocitos/fisiología , Nitrilos , Piridinas , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos , Transducción de Señal , Sulfonas , Factor de Transcripción ReIA/metabolismo , Migración Transendotelial y Transepitelial , Células U937 , Regulación hacia Arriba , Molécula 1 de Adhesión Celular Vascular/metabolismo
19.
Int J Oncol ; 40(4): 1285-90, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22200673

RESUMEN

Natural-killer group 2 (NKG2), a natural killer (NK) cell receptor, plays a critical role in regulating NK cytotoxicity. In this study, we investigated the expression levels of natural killer group 2 member A (NKG2A) and natural killer group 2 member D (NKG2D) in NK cells as well as the regulatory function of NKG2D in patients with colorectal cancer (CRC). Sixty-two CRC patients and 32 healthy controls were enrolled in this study. The expression levels of NKG2A and NKG2D mRNA in peripheral blood mononuclear cells (PBMCs) were investigated using real-time PCR. Flow cytometry was performed to assay the levels of NKG2A and NKG2D proteins in NK cells. The levels of NKG2D mRNA in PBMCs in the patients were significantly lower than those in the controls [mean ± SD, 1.11 ± 0.60 (CRC patients) vs. 1.65 ± 0.71 (healthy controls); p < 0.01], whereas the 2 groups showed no apparent difference in the levels of NKG2A mRNA (p>0.05). In addition, the patients showed significantly lower NKG2D levels in NK cells than the controls did (71.23% ± 8.31% [CRC patients] vs. 79.39% ± 5.58% [healthy controls]; p < 0.01). However, we observed no distinct difference in the NKG2A expression levels in NK cells between the 2 groups (p> 0.05). Notably, blockage of NKG2D signaling with anti-NKG2D antibodies ex vivo resulted in decreased cytotoxicity and CD107a degranulation. Our data revealed that the decrease in NKG2D expression levels may have been associated with suppression of NK cell activity in CRC patients.


Asunto(s)
Neoplasias Colorrectales/inmunología , Células Asesinas Naturales/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/deficiencia , Estudios de Casos y Controles , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Femenino , Células HT29 , Humanos , Células Asesinas Naturales/metabolismo , Masculino , Persona de Mediana Edad , Subfamilia K de Receptores Similares a Lectina de Células NK/biosíntesis , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología
20.
Rheumatol Int ; 32(2): 395-402, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21120500

RESUMEN

Recent studies indicate that high-mobility group box protein 1 (HMGB1) contributes to the pathogenesis of diverse autoimmune disorders. It induces the production of interferon-alpha (IFN-alpha) and tumor necrosis factor alpha (TNF-alpha) in vitro. In the present study, plasma HMGB1, TNF-alpha, and IFN-alpha were determined with ELISA in 37 patients with systemic lupus erythematosus (SLE) and 39 age- and sex-matched healthy controls (HC). The possible associations of these cytokines with disease activities, autoantibodies, and certain laboratory parameters were also explored. The plasma levels of HMGB1, TNF-alpha, and IFN-alpha were increased in SLE patients compared with those of HC (P < 0.05). Moreover, the levels of HMGB1 and TNF-alpha in the active SLE patients were elevated compared with those in inactive patients and HC. Additionally, plasma HMGB1 was positively correlated with peripheral neutrophils, and plasma TNF-alpha was positively correlated with anti-Sm, ESR and CRP, while plasma IFN-alpha was inversely correlated with the age and platelet level in SLE patients. Our data indicated that increased plasma HMGB1 was associated with disease activity in SLE, which was similar to TNF-alpha. High level of plasma IFN-alpha may be related to nephritis and thrombocytopenia in SLE.


Asunto(s)
Proteína HMGB1/sangre , Interferón-alfa/sangre , Lupus Eritematoso Sistémico/sangre , Índice de Severidad de la Enfermedad , Factor de Necrosis Tumoral alfa/sangre , Adolescente , Adulto , Niño , Femenino , Proteína HMGB1/inmunología , Humanos , Interferón-alfa/inmunología , Lupus Eritematoso Sistémico/inmunología , Masculino , Persona de Mediana Edad , Factor de Necrosis Tumoral alfa/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...