Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 568
Filtrar
1.
J Evid Based Med ; 17(3): 654-666, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39322941

RESUMEN

AIM: This study aimed to develop and evaluate the efficacy and safety of Supine Daoyin, a TCM PR technique, in hospitalized patients with AECOPD. METHODS: This is a multicenter, prospective, randomized, controlled trial involving AECOPD inpatients recruited from April 2021 to December 2023 in five tertiary hospitals in China. Participants were randomly assigned to 14 days of Supine Daoyin group or control group and evaluated at days 3, 7, and 14 (posttreatment). The primary outcomes were LOS and CCQ and secondary outcomes were 6MWD, 30-STS, BI, Borg CR10, time on mechanical ventilation, SGRQ, mCOPD-PRO, and mESQ-COPD. RESULTS: Out of 369 participants screened, 228 were randomly assigned (Supine Daoyin group: n = 114; control group: n = 114). For primary outcomes, there was no significant between-group difference in LOS (p > 0.05), but for CCQ the Supine Daoyin was superior to control at days 7 (p < 0.01) and 14 (p < 0.01). For secondary outcomes, Supine Daoyin groups showed robust and superior improvements in 6MWD, 30-STS, BI, Borg CR10, SGRQ, mCOPD-PRO, and mESQ-COPD (all p < 0.05), but for time on mechanical ventilation there was no significant difference in two groups (p > 0.05). CONCLUSION: Supine Daoyin, a novel TCM PR technique, demonstrates safety and efficacy for AECOPD inpatients, yielding clinically meaningful improvements in health status, exercise capacity, and quality of life. This study offers a viable PR option for AECOPD patients with severe symptoms and limited mobility.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/terapia , Masculino , Femenino , Anciano , Persona de Mediana Edad , Estudios Prospectivos , Medicina Tradicional China/métodos , Calidad de Vida , Progresión de la Enfermedad , Resultado del Tratamiento
2.
Chin J Integr Med ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266862

RESUMEN

OBJECTIVE: To investigate whether the combination of chemotherapy with staged Chinese herbal medicine (CHM) therapy could enhance health-related quality of life (QoL) in non-small-cell lung cancer (NSCLC) patients and prolong the time before deterioration of lung cancer symptoms, in comparison to chemotherapy alone. METHODS: A prospective, double-blind, randomized, controlled trial was conducted from December 14, 2017 to August 28, 2020. A total of 180 patients with stage I B-IIIA NSCLC from 5 hospitals in Shanghai were randomly divided into chemotherapy combined with CHM (chemo+CHM) group (120 cases) or chemotherapy combined with placebo (chemo+placebo) group (60 cases) using stratified blocking randomization. The European Organization for Research and Treatment of Cancer (EORTC) Quality-of-Life-Core 30 Scale (QLQ-C30) was used to evaluate the patient-reported outcomes (PROs) during postoperative adjuvant chemotherapy in patients with early-stage NSCLC. Adverse events (AEs) were assessed in the safety analysis. RESULTS: Out of the total 180 patients, 173 patients (116 in the chemo+CHM group and 57 in the chemo+placebo group) were included in the PRO analyses. The initial mean QLQ-C30 Global Health Status (GHS)/QoL scores at baseline were 57.16 ± 1.64 and 57.67 ± 2.25 for the two respective groups (P>0.05). Compared with baseline, the chemo+CHM group had an improvement in EORTC QLQ-C30 GHS/QoL score at week 18 [least squares mean (LSM) change 17.83, 95% confidence interval (CI) 14.29 to 21.38]. Conversely, the chemo+placebo group had a decrease in the score (LSM change -13.67, 95% CI -22.70 to -4.63). A significant between-group difference in the LSM GHS/QoL score was observed, amounting to 31.63 points (95% CI 25.61 to 37.64, P<0.001). The similar trends were observed in physical functioning, fatigue and appetite loss. At week 18, patients in the chemo+CHM group had a higher proportion of improvement or stabilization in GHS/QoL functional and symptom scores compared to chemo+placebo group (P<0.001). The median time to deterioration was longer in the chemo+CHM group for GHS/QoL score [hazard ratio (HR)=0.33, 95% CI 0.23 to 0.48, P<0.0010], physical functioning (HR=0.43, 95% CI 0.25 to 0.75, P=0.0005), fatigue (HR=0.47, 95% CI 0.30 to 0.72, P<0.0001) and appetite loss (HR=0.65, 95% CI 0.42 to 1.00, P=0.0215). The incidence of AEs was lower in the chemo+CHM group than in the chemo+placebo group (9.83% vs. 15.79%, P=0.52). CONCLUSION: The staged CHM therapy could help improve the PROs of postoperative patients with early-stage NSCLC during adjuvant chemotherapy, which is worthy of further clinical research. (Registry No. NCT03372694).

3.
J Neuroinflammation ; 21(1): 228, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294744

RESUMEN

BACKGROUND: During brain aging, disturbances in neuronal phospholipid metabolism result in impaired cognitive function and dysregulation of neurological processes. Mutations in iPLA2ß are associated with neurodegenerative conditions that significantly impact brain phospholipids. iPLA2ß deficiency exacerbates mitochondrial dysfunction and abnormal mitochondrial accumulation. We hypothesized that iPLA2ß contributes to age-related cognitive decline by disrupting neuronal mitophagy. METHODOLOGY: We used aged wild-type (WT) mice and iPLA2ß-/- mice as natural aging models to assess cognitive performance, iPLA2ß expression in the cortex, levels of chemokines and inflammatory cytokines, and mitochondrial dysfunction, with a specific focus on mitophagy and the mitochondrial phospholipid profile. To further elucidate the role of iPLA2ß, we employed adeno-associated virus (AAV)-mediated iPLA2ß overexpression in aged mice and re-evaluated these parameters. RESULTS: Our findings revealed a significant reduction in iPLA2ß levels in the prefrontal cortex of aged brains. Notably, iPLA2ß-deficient mice exhibited impaired learning and memory. Loss of iPLA2ß in the PFC of aged mice led to increased levels of chemokines and inflammatory cytokines. This damage was associated with altered mitochondrial morphology, reduced ATP levels due to dysregulation of the parkin-independent mitophagy pathway, and changes in the mitochondrial phospholipid profile. AAV-mediated overexpression of iPLA2ß alleviated age-related parkin-independent mitophagy pathway dysregulation in primary neurons and the PFC of aged mice, reduced inflammation, and improved cognitive function. CONCLUSIONS: Our study suggests that age-related iPLA2ß loss in the PFC leads to cognitive decline through the disruption of mitophagy. These findings highlight the potential of targeting iPLA2ß to ameliorate age-related neurocognitive disorders.


Asunto(s)
Envejecimiento , Disfunción Cognitiva , Fosfolipasas A2 Grupo VI , Mitofagia , Enfermedades Neuroinflamatorias , Neuronas , Animales , Masculino , Ratones , Envejecimiento/metabolismo , Envejecimiento/patología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/genética , Fosfolipasas A2 Grupo VI/genética , Fosfolipasas A2 Grupo VI/metabolismo , Fosfolipasas A2 Grupo VI/deficiencia , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Mitofagia/fisiología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Neuronas/metabolismo , Neuronas/patología
4.
Int J Biol Macromol ; : 135835, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306158

RESUMEN

We aimed to investigate the effect of a polysaccharide from Tremella aurantialba on ulcerative colitis (UC), which targets ferroptosis in epithelial cells. TA 2-1 (127 kDa) was isolated from T. aurantialba and consisted of Man, Xyl, GlcA, Glc, Fuc and Rha with a molar ratio of 59.2: 23.2: 13.9: 1.6: 1.7: 0.4, exhibited a 1, 3-Man structure with branch chains of T-Xylp, 1,3-Xylp, 1,4-GlcAp, and T-Manp at its O-2 position. TA 2-1 (100 mg/mL) inhibited the cell viability of ferroptosis (19.8 %) in RLS3-induced Caco2 cells and significantly ameliorated symptoms in the colons of mice with dextran sodium sulfate (DSS)-induced UC. TA 2-1 remarkably repaired the intestinal barrier by upregulating claudin-1 and zonula occludens-1 levels. Further analysis found TA 2-1 significantly suppressed lipid peroxidation by regulating ferroptosis-related proteins in UC mice, suggesting that its protective effects are partially mediated by inhibiting ferroptosis. Further analysis of the gut microbiota and fecal microbiota transplantation revealed TA 2-1 might relieve UC symptoms or inhibit ferroptosis by modulating the gut microbiota's composition or metabolites. Results suggest the protective effects of TA 2-1 on the intestinal barrier by inhibiting ferroptosis of epithelial cells, at least by regulating the gut microbiota, highlighting the potential of TA 2-1 in UC treatment.

5.
J Cachexia Sarcopenia Muscle ; 15(5): 2118-2133, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39189428

RESUMEN

BACKGROUND: Hydrogen sulfide (H2S), the third gasotransmitter discovered, regulates a variety of physiological functions. Whether H2S alleviates skeletal muscle ageing by regulating autophagy has not been reported. METHODS: Mice were administered 150 mg/kg/day of D-galactose (D-gal), and C2C12 myotubes were cultured in 20 g/L D-gal to induce ageing. Sodium hydrosulfide (NaHS) was employed as an exogenous donor in the treatment group. The intracellular concentration of H2S was quantified by the 7-azido-4-methylcoumarin fluorescence probe. The proteins involved in the ubiquitin-mediated degradation of AMPKα1 were detected by liquid chromatography tandem mass spectrometry (LC-MS/MS) and co-immunoprecipitation (Co-IP). S-sulfhydration of USP5 was tested by a biotin-switch assay. Associated proteins were analysed by western blot. RESULTS: NaHS was found to effectively restore the H2S content in both ageing gastrocnemius (+91.89%, P < 0.001) and C2C12 myotubes (+27.55%, P < 0.001). In comparison to the D-gal group, NaHS was observed to increase the mean cross-sectional area of muscle fibres (+44.91%, P < 0.001), to decrease the collagen volume fraction of gastrocnemius (-81.32%, P = 0.001) and to reduce the ß-galactosidase-positive area of C2C12 myotubes (-28.74%, P < 0.001). NaHS was also found to reverse the expression of muscle atrophy F box protein (MAFbx), muscle-specific RING finger protein 1 (MuRF1), Cyclin D1 and p21 in the ageing gastrocnemius tissue (MAFbx: -31.73%, P = 0.008; MuRF1: -32.37%, P = 0.003; Cyclin D1: +45.34%, P = 0.010; p21: -25.53%, P = 0.022) and C2C12 myotubes (MAFbx: -16.38%, P < 0.001; MuRF1: -16.45%, P = 0.003; Cyclin D1: +40.23%, P < 0.001; p21: -35.85%, P = 0.026). The AMPKα1-ULK1 pathway was activated and autophagy was up-regulated in NaHS-treated gastrocnemius tissue (p-AMPKα1: +61.61%, P = 0.018; AMPKα1: +30.64%, P = 0.010; p-ULK1/ULK1: +85.87%, P = 0.005; p62: -29.07%, P < 0.001; Beclin1: +24.75%, P = 0.007; light chain 3 II/I [LC3 II/I]: +55.78%, P = 0.004) and C2C12 myotubes (p-AMPKα1: +77.49%, P = 0.018; AMPKα1: +26.18%, P = 0.022; p-ULK1/ULK1: +38.34%, P = 0.012; p62: -9.02%, P = 0.014; Beclin1: +13.36%, P < 0.001; LC3 II/I: +79.38%, P = 0.017; autophagy flux: +24.88%, P = 0.034) compared with the D-gal group. The effects of NaHS on autophagy were comparable to those of acadesine and LYN-1604, and chloroquine could reverse its effects on ageing. LC-MS/MS and Co-IP experiments demonstrated that USP5 is a deubiquitinating enzyme of AMPKα1. Following the knockdown of USP5, the activation of AMPKα1 was decreased (p-AMPKα1: -42.10%, P < 0.001; AMPKα1: -43.93%, P < 0.001), autophagy was inhibited (p-ULK1/ULK1: -27.51, P = 0.001; p62: +36.00, P < 0.001; Beclin1: -22.15%, P < 0.001) and NaHS lost its ability to up-regulate autophagy. NaHS was observed to restore the expression (gastrocnemius: +62.17%, P < 0.001; C2C12 myotubes: +37.51%, P = 0.003) and S-sulfhydration (+53.07%, P = 0.009) of USP5 and reduce the ubiquitination of AMPKα1. CONCLUSIONS: H2S promotes the deubiquitination of AMPKα1 by increasing the expression and S-sulfhydration of USP5, thereby up-regulating autophagy and alleviating skeletal muscle ageing.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Sulfuro de Hidrógeno , Músculo Esquelético , Animales , Ratones , Autofagia/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Envejecimiento/efectos de los fármacos , Ubiquitinación/efectos de los fármacos , Masculino
6.
Int J Cancer ; 155(11): 1982-1995, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39057841

RESUMEN

Advanced glycation end-products (AGEs), formed endogenously or obtained exogenously from diet, may contribute to chronic inflammation, intracellular signaling alterations, and pathogenesis of several chronic diseases including colorectal cancer (CRC). However, the role of AGEs in CRC survival is less known. The associations of pre-diagnostic circulating AGEs and their soluble receptor (sRAGE) with CRC-specific and overall mortality were estimated using multivariable-adjusted Cox proportional hazards regression among 1369 CRC cases in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Concentrations of major plasma AGEs, Nε-[carboxy-methyl]lysine (CML), Nε-[carboxy-ethyl]lysine (CEL) and Nδ-[5-hydro-5-methyl-4-imidazolon-2-yl]-ornithine (MG-H1), were measured using ultra-performance liquid chromatography mass-spectrometry. sRAGE was assessed by enzyme-linked immunosorbent assay. Over a mean follow-up period of 96 months, 693 deaths occurred of which 541 were due to CRC. Individual and combined AGEs were not statistically significantly associated with CRC-specific or overall mortality. However, there was a possible interaction by sex for CEL (Pinteraction = .05). Participants with higher sRAGE had a higher risk of dying from CRC (HRQ5vs.Q1 = 1.67, 95% CI: 1.21-2.30, Ptrend = .02) or any cause (HRQ5vs.Q1 = 1.38, 95% CI: 1.05-1.83, Ptrend = .09). These associations tended to be stronger among cases with diabetes (Pinteraction = .03) and pre-diabetes (Pinteraction <.01) before CRC diagnosis. Pre-diagnostic AGEs were not associated with CRC-specific and overall mortality in individuals with CRC. However, a positive association was observed for sRAGE. Our findings may stimulate further research on the role of AGEs and sRAGE in survival among cancer patients with special emphasis on potential effect modifications by sex and diabetes.


Asunto(s)
Neoplasias Colorrectales , Productos Finales de Glicación Avanzada , Receptor para Productos Finales de Glicación Avanzada , Humanos , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/diagnóstico , Masculino , Femenino , Productos Finales de Glicación Avanzada/sangre , Persona de Mediana Edad , Receptor para Productos Finales de Glicación Avanzada/sangre , Anciano , Estudios Prospectivos , Lisina/sangre , Lisina/análogos & derivados , Ornitina/sangre , Ornitina/análogos & derivados , Modelos de Riesgos Proporcionales , Biomarcadores de Tumor/sangre , Imidazoles
7.
BMC Genomics ; 25(1): 639, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926642

RESUMEN

BACKGROUND: Aging is a prominent risk factor for diverse diseases; therefore, an in-depth understanding of its physiological mechanisms is required. Nonhuman primates, which share the closest genetic relationship with humans, serve as an ideal model for exploring the complex aging process. However, the potential of the nonhuman primate animal model in the screening of human aging markers is still not fully exploited. Multiomics analysis of nonhuman primate peripheral blood offers a promising approach to evaluate new therapies and biomarkers. This study explores aging-related biomarker through multilayer omics, including transcriptomics (mRNA, lncRNA, and circRNA) and proteomics (serum and serum-derived exosomes) in rhesus monkeys (Macaca mulatta). RESULTS: Our findings reveal that, unlike mRNAs and circRNAs, highly expressed lncRNAs are abundant during the key aging period and are associated with cancer pathways. Comparative analysis highlighted exosomal proteins contain more types of proteins than serum proteins, indicating that serum-derived exosomes primarily regulate aging through metabolic pathways. Finally, eight candidate aging biomarkers were identified, which may serve as blood-based indicators for detecting age-related brain changes. CONCLUSIONS: Our results provide a comprehensive understanding of nonhuman primate blood transcriptomes and proteomes, offering novel insights into the aging mechanisms for preventing or treating age-related diseases.


Asunto(s)
Envejecimiento , Biomarcadores , Exosomas , Macaca mulatta , Proteómica , Animales , Envejecimiento/genética , Biomarcadores/sangre , Exosomas/metabolismo , Exosomas/genética , Proteómica/métodos , Transcriptoma , Perfilación de la Expresión Génica , ARN Largo no Codificante/genética , ARN Largo no Codificante/sangre , ARN Largo no Codificante/metabolismo , Modelos Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteoma/metabolismo , Genómica/métodos
8.
J Asian Nat Prod Res ; : 1-15, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869200

RESUMEN

This study examined the impact of Semen raphani on the absorption of ginsenosides from Panax ginseng C.A. Meyer (ginseng) using a Caco-2 cell model and Ultra-High-Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS). Six primary ginsenosides (Rg1, Re, Rb1, Rb2, Rc, Rd) were quantified. Results showed that Semen Raphani increased the efflux rate of ginsenosides, particularly at higher concentrations, suggesting it inhibits their absorption. The research elucidates the intestinal absorption process of ginsenosides and the antagonistic mechanism of Semen Raphani against ginseng.

9.
Opt Express ; 32(11): 19825-19836, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859108

RESUMEN

Using the three-dimensional classical ensemble approach, we theoretically investigate the nonsequential double ionization of argon atoms in an intense laser field enhanced by bowtie-nanotip. We observe an anomalous decrease in the double ionization yield as the laser intensity increases, along with a significant gap in the low momentum of photoelectrons. According to our theoretical analysis, the finite range of the induced field by the nanostructure is the fundamental cause of the decline in double ionization yield. Driven by the enhanced inhomogeneous field, energetic electrons can escape from the finite range of nanotips without returning. This reduces the possibility of re-scattering on the nucleus and imprints the finite size effect into the double ionization yield and momentum distribution of photoelectrons in the form of yield decline and a gap in the photoelectron-momentum distribution.

10.
Front Microbiol ; 15: 1387223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751715

RESUMEN

It is of utmost importance to understand the characteristics and regulatory mechanisms of soil in order to optimize soil management and enhance crop yield. Poly-γ-glutamic acid (γ-PGA), a stress-resistant amino acid polymer, plays a crucial role in plant drought stress resistance. However, little is known about the effects of γ-PGA on soil characteristics during drought treatments. In this study, the effects of different forms of γ-PGA on soil texture and basic physical and chemical properties under short-term drought conditions were investigated. Furthermore, the impact of γ-PGA on the microbial community and metabolic function of maize was analyzed. Under drought conditions, the introduction of γ-PGA into the soil resulted in notable improvements in the mechanical composition ratio and infiltration capacity of the soil. Concurrently, this led to a reduction in soil bulk density and improved soil organic matter content and fertility. Additionally, metagenomic analysis revealed that under drought conditions, the incorporation of γ-PGA into the soil enhanced the soil microbiota structure. This shift led to the predominance of bacteria that are crucial for carbon, nitrogen, and phosphorus cycles in the soil. Metabolomics analysis revealed that under drought treatment, γ-PGA affected soil metabolic patterns, with a particular focus on alterations in amino acid and vitamin metabolism pathways. Correlation analysis between the soil metagenome and metabolites showed that microorganisms played a significant role in metabolite accumulation. These results demonstrated that γ-PGA could improve soil characteristics under drought conditions and play an important role in soil microorganisms and microbial metabolism, providing further insights into the changes in soil characteristics under drought conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA