Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Anim Breed Genet ; 140(3): 253-263, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36637041

RESUMEN

We have previously shown that single-step genomic best linear unbiased prediction (ssGBLUP) estimates breeding values of genomically preselected animals without preselection bias for widely recorded traits, that is traits recorded for the majority of animals in the breeding population. This study investigated the impact of genomic preselection (GPS) on accuracy and bias in ssGBLUP evaluation of genomically preselected animals for a scarcely recorded trait, that is a trait recorded for only a small proportion of the animals, which generally has a lower prediction accuracy than widely recorded traits, mainly due to having a much smaller number of phenotypes available. We used data from a commercial pig breeding program, considering feed intake as a scarcely recorded target trait, being available for ~30% of the animals with phenotypes for any trait, and average daily gain, backfat thickness and loin depth as widely recorded predictor traits, being available for >95% of the animals with phenotypes for any trait. The data contained the routine GPS implemented by commercial animal breeding programs, and we retrospectively implemented two scenarios with additional layers of GPS by discarding pedigree, genotypes and phenotypes of animals without progeny. The ssGBLUP evaluation following GPS used records only from the target trait, only from the predictor traits, or both. Accuracy for feed intake did not differ statistically across GPS scenarios, although it tended to decrease with more intense GPS. The accuracy had average values of 0.37, 0.44, and 0.45 across all GPS scenarios when, respectively, records from only the target trait, only the predictor traits, or both were used in the ssGBLUP evaluation. Considerable deflation of the genomic breeding values for feed intake was observed in the most stringent GPS scenario, due to the variance components being underestimated as a result of the limited amount of strongly preselected data. As long as (co)variance components were unbiased, no or only marginal bias was observed. These results for accuracy and bias were observed whether records of the scarcely recorded target trait, of the predictor traits, or both were used in the ssGBLUP evaluation. Our results show that for the scarcely recorded feed intake in pigs, ssGBLUP is able to estimate breeding values of preselected animals without preselection bias, similarly as previously observed for widely recorded traits.


Asunto(s)
Genoma , Genómica , Animales , Porcinos/genética , Estudios Retrospectivos , Genómica/métodos , Genotipo , Fenotipo , Ingestión de Alimentos/genética , Linaje , Modelos Genéticos
2.
Genet Sel Evol ; 54(1): 48, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764921

RESUMEN

BACKGROUND: Empirically assessing the impact of preselection on genetic evaluation of preselected animals requires comparing scenarios that take different approaches into account, including scenarios without preselection. However, preselection is almost always performed in animal breeding programs, so it is difficult to have a dataset without preselection. Hence, most studies on preselection have used simulated datasets, and have concluded that genomic estimated breeding values (GEBV) from subsequent single-step genomic best linear unbiased prediction (ssGBLUP) evaluations are unbiased. The aim of this study was to investigate the impact of genomic preselection (GPS) on accuracy and bias in subsequent ssGBLUP evaluations, using data from a commercial pig breeding program. METHODS: We used data on average daily gain during performance testing, average daily gain throughout life, backfat thickness, and loin depth from one sire line and one dam line of pigs. As these traits have different weights in the breeding goals of the two lines, we analyzed the lines separately. For each line, we implemented a reference GPS scenario that kept all available data, against which the next two scenarios were compared. We then implemented two other scenarios with additional layers of GPS by removing all animals without progeny either (i) only in the validation generation, or (ii) in all generations. We conducted subsequent ssGBLUP evaluations for each GPS scenario, using all the data remaining after implementing the GPS scenario. Accuracy and bias were computed by comparing GEBV against progeny yield deviations of validation animals. RESULTS: Results for all traits and in both lines showed a marginal loss in accuracy due to the additional layers of GPS. Average accuracies across all GPS scenarios in the two lines were 0.39, 0.47, 0.56, and 0.60, for average daily gain during performance testing and throughout life, backfat thickness, and loin depth, respectively. Biases were largely absent, and when present, did not differ greatly between the GPS scenarios. CONCLUSIONS: We conclude that the impact of preselection on accuracy and bias in subsequent ssGBLUP evaluations of selection candidates in pigs is generally minimal. We expect this conclusion to apply for other animal breeding programs as well, since preselection of any type or intensity generally has the same effect in animal breeding programs.


Asunto(s)
Genoma , Modelos Genéticos , Animales , Sesgo , Genómica/métodos , Fenotipo , Porcinos/genética
3.
J Anim Breed Genet ; 138(4): 432-441, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33372707

RESUMEN

In animal breeding, parents of the next generation are usually selected in multiple stages, and the initial stages of this selection are called preselection. Preselection reduces the information available for subsequent evaluation of preselected animals and this sometimes leads to bias. The objective of this study was to establish the minimum information required to subsequently evaluate genomically preselected animals without bias arising from preselection, with single-step genomic best linear unbiased prediction (ssGBLUP). We simulated a nucleus of a breeding program in which a recent population of 15 generations was produced. In each generation, parents of the next generation were selected in a single-stage selection based on pedigree BLUP. However, in generation 15, 10% of male and 15% of female offspring were preselected on their genomic estimated breeding values (GEBV). These GEBV were estimated using ssGBLUP, including the pedigree of all animals in generations 0-15, genotypes of all animals in generations 13-15 and phenotypes of all animals in generations 11-14. In subsequent ssGBLUP evaluation of these preselected animals, genotypes and phenotypes from various groups of animals were excluded one after another. We found that GEBV of the preselected animals were only estimated without preselection bias when genotypes and phenotypes of all animals in generations 13 and 14 and of the preselected animals were included in the subsequent evaluation. We also found that genotypes of the animals discarded at preselection only helped in reducing preselection bias in GEBV of their preselected sibs when genotypes of their parents were absent or excluded from the subsequent evaluation. We concluded that to prevent preselection bias in subsequent ssGBLUP evaluation of genomically preselected animals, information representative of the reference data used in the evaluation at preselection and genotypes and phenotypes of the preselected animals are needed in the subsequent evaluation.


Asunto(s)
Genoma , Animales , Femenino , Genómica , Genotipo , Masculino , Modelos Genéticos , Linaje , Fenotipo
4.
Genet Sel Evol ; 52(1): 42, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727349

RESUMEN

BACKGROUND: Preselection of candidates, hereafter referred to as preselection, is a common practice in breeding programs. Preselection can cause bias and accuracy loss in subsequent pedigree-based best linear unbiased prediction (PBLUP). However, the impact of preselection on subsequent single-step genomic BLUP (ssGBLUP) is not completely clear yet. Therefore, in this study, we investigated, across different heritabilities, the impact of intensity and type of preselection on subsequent ssGBLUP evaluation of preselected animals. METHODS: We simulated a nucleus of a breeding programme, in which a recent population of 15 generations was produced with PBLUP-based selection. In generation 15 of this recent population, the parents of the next generation were preselected using several preselection scenarios. These scenarios were combinations of three intensities of preselection (no, high or very high preselection) and three types of preselection (genomic, parental average or random), across three heritabilities (0.5, 0.3 or 0.1). Following each preselection scenario, a subsequent evaluation was performed using ssGBLUP by excluding all the information from the preculled animals, and these genetic evaluations were compared in terms of accuracy and bias for the preselected animals, and in terms of realized genetic gain. RESULTS: Type of preselection affected selection accuracy at both preselection and subsequent evaluation stages. While preselection accuracy decreased, accuracy in the subsequent ssGBLUP evaluation increased, from genomic to parent average to random preselection scenarios. Bias was always negligible. Genetic gain decreased from genomic to parent average to random preselection scenarios. Genetic gain also decreased with increasing intensity of preselection, but only by a maximum of 0.1 additive genetic standard deviation from no to very high genomic preselection scenarios. CONCLUSIONS: Using ssGBLUP in subsequent evaluations prevents preselection bias, irrespective of intensity and type of preselection, and heritability. With GPS, in addition to reducing the phenotyping effort considerably, the use of ssGBLUP in subsequent evaluations realizes only a slightly lower genetic gain than that realized without preselection. This is especially the case for traits that are expensive to measure (e.g. feed intake of individual broiler chickens), and traits for which phenotypes can only be measured at advanced stages of life (e.g. litter size in pigs).


Asunto(s)
Cruzamiento/métodos , Ganado/genética , Aves de Corral/genética , Animales , Femenino , Masculino , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA