Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Math Phys Eng Sci ; 477(2247): 20200824, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35153549

RESUMEN

Iodine is a critical trace element involved in many diverse and important processes in the Earth system. The importance of iodine for human health has been known for over a century, with low iodine in the diet being linked to goitre, cretinism and neonatal death. Research over the last few decades has shown that iodine has significant impacts on tropospheric photochemistry, ultimately impacting climate by reducing the radiative forcing of ozone (O3) and air quality by reducing extreme O3 concentrations in polluted regions. Iodine is naturally present in the ocean, predominantly as aqueous iodide and iodate. The rapid reaction of sea-surface iodide with O3 is believed to be the largest single source of gaseous iodine to the atmosphere. Due to increased anthropogenic O3, this release of iodine is believed to have increased dramatically over the twentieth century, by as much as a factor of 3. Uncertainties in the marine iodine distribution and global cycle are, however, major constraints in the effective prediction of how the emissions of iodine and its biogeochemical cycle may change in the future or have changed in the past. Here, we present a synthesis of recent results by our team and others which bring a fresh perspective to understanding the global iodine biogeochemical cycle. In particular, we suggest that future climate-induced oceanographic changes could result in a significant change in aqueous iodide concentrations in the surface ocean, with implications for atmospheric air quality and climate.

2.
Nat Commun ; 11(1): 4599, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934227

RESUMEN

Accounting guidelines exist for the recording of carbon flows in terrestrial and coastal ecosystems. Shelf sea sediments, while considered an important carbon store, have yet to receive comparable scrutiny. Here, we explore whether effective management of carbon stocks accumulating in shelf seas could contribute towards a nation's greenhouse gas emissions reduction targets. We review the complexities of carbon transport and fate in shelf seas, and the geopolitical challenges of carbon accounting in climate governance because of the transboundary nature of carbon flows in the marine environment. New international accounting guidance and governance frameworks are needed to prompt climate action.

3.
Sci Data ; 6(1): 286, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772255

RESUMEN

The marine iodine cycle has significant impacts on air quality and atmospheric chemistry. Specifically, the reaction of iodide with ozone in the top few micrometres of the surface ocean is an important sink for tropospheric ozone (a pollutant gas) and the dominant source of reactive iodine to the atmosphere. Sea surface iodide parameterisations are now being implemented in air quality models, but these are currently a major source of uncertainty. Relatively little observational data is available to estimate the global surface iodide concentrations, and this data has not hitherto been openly available in a collated, digital form. Here we present all available sea surface (<20 m depth) iodide observations. The dataset includes values digitised from published manuscripts, published and unpublished data supplied directly by the originators, and data obtained from repositories. It contains 1342 data points, and spans latitudes from 70°S to 68°N, representing all major basins. The data may be used to model sea surface iodide concentrations or as a reference for future observations.

4.
Philos Trans A Math Phys Eng Sci ; 372(2019): 20130047, 2014 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-24891389

RESUMEN

The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.

5.
Biogeochemistry ; 113(1): 53-68, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-32355379

RESUMEN

Prompted by recent observations of seasonal low dissolved oxygen from two moorings in the North Sea, a hydrographic survey in August 2010 mapped the spatial extent of summer oxygen depletion. Typical near-bed dissolved oxygen saturations in the stratified regions of the North Sea were 75-80 % while the well-mixed regions of the southern North Sea reached 90 %. Two regions of strong thermal stratification, the area between the Dooley and Central North Sea Currents and the area known as the Oyster Grounds, had oxygen saturations as low as 65 and 70 % (200 and 180 µmol dm-3) respectively. Low dissolved oxygen was apparent in regions characterised by low advection, high stratification, elevated organic matter production from the spring bloom and a deep chlorophyll maximum. Historical data over the last century from the International Council for the Exploration of the Sea oceanographic database highlight an increase in seasonal oxygen depletion and a warming over the past 20 years. The 2010 survey is consistent with, and reinforces, the signal of recent depleted oxygen at key locations seen in the (albeit sparse) historical data.

6.
Environ Sci Technol ; 43(17): 6592-6, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19764222

RESUMEN

The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (<20 microm) Saharan soil and goethite suspensions. Microscopic analyses of the processed soil and goethite samples reveal the neo-formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust


Asunto(s)
Atmósfera , Polvo/análisis , Compuestos Férricos/química , Modelos Teóricos , Nanopartículas/química , Aerosoles , Atmósfera/química , Microscopía Electrónica de Rastreo , Propiedades de Superficie
7.
Nature ; 457(7229): 577-80, 2009 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19177128

RESUMEN

The addition of iron to high-nutrient, low-chlorophyll regions induces phytoplankton blooms that take up carbon. Carbon export from the surface layer and, in particular, the ability of the ocean and sediments to sequester carbon for many years remains, however, poorly quantified. Here we report data from the CROZEX experiment in the Southern Ocean, which was conducted to test the hypothesis that the observed north-south gradient in phytoplankton concentrations in the vicinity of the Crozet Islands is induced by natural iron fertilization that results in enhanced organic carbon flux to the deep ocean. We report annual particulate carbon fluxes out of the surface layer, at three kilometres below the ocean surface and to the ocean floor. We find that carbon fluxes from a highly productive, naturally iron-fertilized region of the sub-Antarctic Southern Ocean are two to three times larger than the carbon fluxes from an adjacent high-nutrient, low-chlorophyll area not fertilized by iron. Our findings support the hypothesis that increased iron supply to the glacial sub-Antarctic may have directly enhanced carbon export to the deep ocean. The CROZEX sequestration efficiency (the amount of carbon sequestered below the depth of winter mixing for a given iron supply) of 8,600 mol mol(-1) was 18 times greater than that of a phytoplankton bloom induced artificially by adding iron, but 77 times smaller than that of another bloom initiated, like CROZEX, by a natural supply of iron. Large losses of purposefully added iron can explain the lower efficiency of the induced bloom(6). The discrepancy between the blooms naturally supplied with iron may result in part from an underestimate of horizontal iron supply.


Asunto(s)
Carbono/metabolismo , Hierro/metabolismo , Agua de Mar/química , Regiones Antárticas , Clorofila/análisis , Clorofila/metabolismo , Clorofila A , Eutrofización , Geografía , Sedimentos Geológicos/química , Océanos y Mares , Fitoplancton/metabolismo , Estaciones del Año , Factores de Tiempo
8.
Anal Chem ; 78(14): 5040-5, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16841927

RESUMEN

With direct evidence that iron is the chemical limitation of phytoplankton growth, particularly in the Southern Ocean, it is increasingly important to develop new tools that provide direct measurement of the bioavailable iron fraction in oceanic waters. Here we report the development of a fluorescence quenching-based siderophore biosensor capable of the in situ measurement of this ultratrace Fe(III) fraction at ambient pH ( approximately 8). Parabactin was extracted from cultures of Paracoccus denitrificans. The purified siderophore was encapsulated within a spin-coated sol-gel thin film, which was subsequently incorporated in a flow cell system. The parabactin biosensor has been fully characterized for the detection of Fe(III) in seawater samples. The biosensor can be regenerated by lowering the pH of the flowing solution, thereby releasing the chelated Fe(III), enabling multiple use. The LOD of the biosensor was determined to be 40 pM, while for an Fe(III) concentration of 1 nM, a reproducibility with a RSD of 6% (n = 10) was obtained. The accuracy of the biosensing system has been determined through analysis of a certified seawater reference sample. Samples from the Atlantic Ocean have been analyzed using the parabactin biosensor providing a concentration vs depth profile for the bioavailable Fe(III) fraction in the 50 pM-1 nM range.


Asunto(s)
Técnicas Biosensibles/métodos , Compuestos de Hierro/análisis , Compuestos de Hierro/química , Agua de Mar/análisis , Sideróforos/análisis , Sideróforos/química , Espectrometría de Fluorescencia/métodos , Disponibilidad Biológica , Estructura Molecular , Oxazoles/química , Agua de Mar/química
9.
J Agric Food Chem ; 53(14): 5760-5, 2005 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-15998145

RESUMEN

The effect of fertilizer type, amount of fertilizer applied, growing medium, and water type on the nitrogen-15 content of carrots, tomatoes, and lettuces has been investigated. Crops grown using synthetic nitrogen fertilizer were isotopically lighter than those grown using pelleted chicken manure. For example, for equivalent amounts of nitrogen applied, carrots grown with ammonium nitrate fertilizer had delta15N values between 3 per thousand and 4 per thousand lower than those grown using pelleted chicken manure. Plants grown in peat-based compost were generally found to be isotopically lighter than those grown in composted bark based compost. Results suggest that nitrate content and the delta15N of the nitrate in irrigation water may also influence crop delta15N. Wider implications of using crop delta15N more generally as an indicator of whether synthetic nitrogen fertilizers have been applied to a crop and the possible application and limitations of using crop delta15N as an indicator of agricultural regime (organic/conventional) are discussed.


Asunto(s)
Productos Agrícolas/química , Fertilizantes/análisis , Isótopos de Nitrógeno/análisis , Daucus carota/química , Daucus carota/crecimiento & desarrollo , Lactuca/química , Lactuca/crecimiento & desarrollo , Solanum lycopersicum/química , Solanum lycopersicum/crecimiento & desarrollo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...