Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 30(7): 2505-2521, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35443935

RESUMEN

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasia that lacks effective targeted chemotherapies. Clinically, JMML manifests as monocytic leukocytosis, splenomegaly with consequential thrombocytopenia. Most commonly, patients have gain-of-function (GOF) oncogenic mutations in PTPN11 (SHP2), leading to Erk and Akt hyperactivation. Mechanism(s) involved in co-regulation of Erk and Akt in the context of GOF SHP2 are poorly understood. Here, we show that Bruton's tyrosine kinase (BTK) is hyperphosphorylated in GOF Shp2-bearing cells and utilizes B cell adaptor for PI3K to cooperate with p110δ, the catalytic subunit of PI3K. Dual inhibition of BTK and p110δ reduces the activation of both Erk and Akt. In vivo, individual targeting of BTK or p110δ in a mouse model of human JMML equally reduces monocytosis and splenomegaly; however, the combined treatment results in a more robust inhibition and uniquely rescues anemia and thrombocytopenia. RNA-seq analysis of drug-treated mice showed a profound reduction in the expression of genes associated with leukemic cell migration and inflammation, leading to correction in the infiltration of leukemic cells in the lung, liver, and spleen. Remarkably, in a patient derived xenograft model of JMML, leukemia-initiating stem and progenitor cells were potently inhibited in response to the dual drug treatment.


Asunto(s)
Leucemia Mielomonocítica Juvenil , Trombocitopenia , Agammaglobulinemia Tirosina Quinasa/genética , Animales , Humanos , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/metabolismo , Leucemia Mielomonocítica Juvenil/terapia , Ratones , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Esplenomegalia/genética , Células Madre/metabolismo
2.
PLoS One ; 13(5): e0196704, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29723221

RESUMEN

Sterol Regulatory Element Binding Protein-1 (SREBP-1) is a conserved transcription factor of the basic helix-loop-helix leucine zipper family (bHLH-Zip) that plays a central role in regulating expression of genes of carbohydrate and fatty acid metabolism in the liver. SREBP-1 activity is essential for the control of insulin-induced anabolic processes during the fed state. In addition, SREBP-1 regulates expression of key molecules in the insulin signaling pathway, including insulin receptor substrate 2 (IRS2) and a subunit of the phosphatidylinositol 3-kinase (PI3K) complex, PIK3R3, suggesting that feedback mechanisms exist between SREBP-1 and this pathway. Nevertheless, the overall contribution of SREBP-1 activity to maintain insulin signal transduction is unknown. Furthermore, Akt is a known activator of mTORC1, a sensor of energy availability that plays a fundamental role in metabolism, cellular growth and survival. We have silenced SREBP-1 and explored the impact on insulin signaling and mTOR in mice under fed, fasted and refed conditions. No alterations in circulating levels of insulin were observed. The studies revealed that depletion of SREBP-1 had no impact on IRS1Y612, AktS473, and downstream effectors GSK3αS21 and FoxO1S256 during the fed state. Nevertheless, reduced levels of these molecules were observed under fasting conditions. These effects were not associated with changes in phosphorylation of mTOR. Overall, our data indicate that the contribution of SREBP-1 to maintain insulin signal transduction in liver is modest.


Asunto(s)
Insulina/fisiología , Hígado/metabolismo , Transducción de Señal/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/fisiología , Animales , Glucemia/análisis , Células Cultivadas , Metabolismo Energético/genética , Ayuno/metabolismo , Proteína Forkhead Box O1/biosíntesis , Proteína Forkhead Box O1/genética , Vectores Genéticos , Glucoquinasa/metabolismo , Gluconeogénesis/genética , Glucógeno Sintasa Quinasa 3/biosíntesis , Glucógeno Sintasa Quinasa 3/genética , Hepatocitos/metabolismo , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Periodo Posprandial/fisiología , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Proteínas Proto-Oncogénicas c-akt/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Recombinantes/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/antagonistas & inhibidores , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Serina-Treonina Quinasas TOR/metabolismo
3.
Sci Rep ; 6: 18958, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26743462

RESUMEN

MicroRNA (miRNA) are short non-coding RNA molecules that regulate multiple cellular processes, including development, cell differentiation, proliferation and death. Nevertheless, little is known on whether miRNA control the same gene networks in different tissues. miR-709 is an abundant miRNA expressed ubiquitously. Through transcriptome analysis, we have identified targets of miR-709 in hepatocytes. miR-709 represses genes implicated in cytoskeleton organization, extracellular matrix attachment, and fatty acid metabolism. Remarkably, none of the previously identified targets in non-hepatic tissues are silenced by miR-709 in hepatocytes, even though several of these genes are abundantly expressed in liver. In addition, miR-709 is upregulated in hepatocellular carcinoma, suggesting it participates in the genetic reprogramming that takes place during cell division, when cytoskeleton remodeling requires substantial changes in gene expression. In summary, the present study shows that miR-709 does not repress the same pool of genes in separate cell types. These results underscore the need for validating gene targets in every tissue a miRNA is expressed.


Asunto(s)
Carcinoma Hepatocelular/genética , Redes Reguladoras de Genes , Hepatocitos/metabolismo , Neoplasias Hepáticas/genética , MicroARNs/genética , Transcriptoma , Animales , Secuencia de Bases , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genes Reporteros , Hepatocitos/citología , Humanos , Metabolismo de los Lípidos/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Luciferasas/genética , Luciferasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Especificidad de Órganos , Cultivo Primario de Células , Transfección
4.
J Biol Chem ; 289(9): 5510-7, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24398675

RESUMEN

Sterol regulatory element-binding protein-1 (SREBP-1) is a key transcription factor that regulates genes in the de novo lipogenesis and glycolysis pathways. The levels of SREBP-1 are significantly elevated in obese patients and in animal models of obesity and type 2 diabetes, and a vast number of studies have implicated this transcription factor as a contributor to hepatic lipid accumulation and insulin resistance. However, its role in regulating carbohydrate metabolism is poorly understood. Here we have addressed whether SREBP-1 is needed for regulating glucose homeostasis. Using RNAi and a new generation of adenoviral vector, we have silenced hepatic SREBP-1 in normal and obese mice. In normal animals, SREBP-1 deficiency increased Pck1 and reduced glycogen deposition during fed conditions, providing evidence that SREBP-1 is necessary to regulate carbohydrate metabolism during the fed state. Knocking SREBP-1 down in db/db mice resulted in a significant reduction in triglyceride accumulation, as anticipated. However, mice remained hyperglycemic, which was associated with up-regulation of gluconeogenesis gene expression as well as decreased glycolysis and glycogen synthesis gene expression. Furthermore, glycogen synthase activity and glycogen accumulation were significantly reduced. In conclusion, silencing both isoforms of SREBP-1 leads to significant changes in carbohydrate metabolism and does not improve insulin resistance despite reducing steatosis in an animal model of obesity and type 2 diabetes.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Gluconeogénesis/fisiología , Glucógeno/biosíntesis , Hígado/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Técnicas de Silenciamiento del Gen , Glucógeno/genética , Masculino , Ratones , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
5.
Ecol Evol ; 3(7): 1992-2001, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23919145

RESUMEN

When hybrid inviability is an indirect by-product of local adaptation, we expect its degree of severity between pairs of populations to vary and to be sensitive to the environment. While complete reciprocal hybrid inviability is the outcome of the gradual process of local adaptation, it is not representative of the process of accumulation of incompatibility. In the flour beetle, Tribolium castaneum, some pairs of populations exhibit complete, reciprocal F1 hybrid incompatibility while other pairs are fully or partially compatible. We characterize this naturally occurring variation in the degree and timing of expression of the hybrid incompatible phenotype to better understand the number of genes or developmental processes contributing to speciation. We assessed the morphological and developmental variation in four Tribolium castaneum populations and their 12 possible F1 hybrids at each life-history stage from egg to adult. We find that the rate of hybrid larval development is affected in all interpopulation crosses, including those eventually producing viable, fertile adults. Hybrid incompatibility manifests early in development as changes in the duration of instars and diminished success in the transition between instars are relative to the parent populations. Parent populations with similar developmental profiles may produce hybrids with disrupted development. The degree and timing of expression of hybrid inviability depends upon populations crossed, direction of the cross, and environment in which hybrids are raised. Our findings suggest that the coordinated expression of genes involved in transitional periods of development is the underlying cause of hybrid incompatibility in this species.

6.
Proc Natl Acad Sci U S A ; 108(46): E1146-55, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22006328

RESUMEN

Autosomal dominant hypophosphatemic rickets (ADHR) is unique among the disorders involving Fibroblast growth factor 23 (FGF23) because individuals with R176Q/W and R179Q/W mutations in the FGF23 (176)RXXR(179)/S(180) proteolytic cleavage motif can cycle from unaffected status to delayed onset of disease. This onset may occur in physiological states associated with iron deficiency, including puberty and pregnancy. To test the role of iron status in development of the ADHR phenotype, WT and R176Q-Fgf23 knock-in (ADHR) mice were placed on control or low-iron diets. Both the WT and ADHR mice receiving low-iron diet had significantly elevated bone Fgf23 mRNA. WT mice on a low-iron diet maintained normal serum intact Fgf23 and phosphate metabolism, with elevated serum C-terminal Fgf23 fragments. In contrast, the ADHR mice on the low-iron diet had elevated intact and C-terminal Fgf23 with hypophosphatemic osteomalacia. We used in vitro iron chelation to isolate the effects of iron deficiency on Fgf23 expression. We found that iron chelation in vitro resulted in a significant increase in Fgf23 mRNA that was dependent upon Mapk. Thus, unlike other syndromes of elevated FGF23, our findings support the concept that late-onset ADHR is the product of gene-environment interactions whereby the combined presence of an Fgf23-stabilizing mutation and iron deficiency can lead to ADHR.


Asunto(s)
Raquitismo Hipofosfatémico Familiar/genética , Factores de Crecimiento de Fibroblastos/genética , Deficiencias de Hierro , Anemia Ferropénica/complicaciones , Animales , Raquitismo Hipofosfatémico Familiar/fisiopatología , Femenino , Factor-23 de Crecimiento de Fibroblastos , Interacción Gen-Ambiente , Glucuronidasa/metabolismo , Hipofosfatemia/genética , Proteínas Klotho , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Transgénicos , Osteocitos/citología , Osteomalacia/genética , Fenotipo , Estructura Terciaria de Proteína , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...