Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 17(7): e0011118, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37399207

RESUMEN

BACKGROUND: Worldwide, it is estimated that over 6 million people are infected with Chagas disease (ChD). It is a neglected disease that can lead to severe heart conditions in its chronic phase. While early treatment can avoid complications, the early-stage detection rate is low. We explore the use of deep neural networks to detect ChD from electrocardiograms (ECGs) to aid in the early detection of the disease. METHODS: We employ a convolutional neural network model that uses 12-lead ECG data to compute the probability of a ChD diagnosis. Our model is developed using two datasets which jointly comprise over two million entries from Brazilian patients: The SaMi-Trop study focusing on ChD patients, enriched with data from the CODE study from the general population. The model's performance is evaluated on two external datasets: the REDS-II, a study focused on ChD with 631 patients, and the ELSA-Brasil study, with 13,739 civil servant patients. FINDINGS: Evaluating our model, we obtain an AUC-ROC of 0.80 (CI 95% 0.79-0.82) for the validation set (samples from CODE and SaMi-Trop), and in external validation datasets: 0.68 (CI 95% 0.63-0.71) for REDS-II and 0.59 (CI 95% 0.56-0.63) for ELSA-Brasil. In the latter, we report a sensitivity of 0.52 (CI 95% 0.47-0.57) and 0.36 (CI 95% 0.30-0.42) and a specificity of 0.77 (CI 95% 0.72-0.81) and 0.76 (CI 95% 0.75-0.77), respectively. Additionally, when considering only patients with Chagas cardiomyopathy as positive, the model achieved an AUC-ROC of 0.82 (CI 95% 0.77-0.86) for REDS-II and 0.77 (CI 95% 0.68-0.85) for ELSA-Brasil. INTERPRETATION: The neural network detects chronic Chagas cardiomyopathy (CCC) from ECG-with weaker performance for early-stage cases. Future work should focus on curating large higher-quality datasets. The CODE dataset, our largest development dataset includes self-reported and therefore less reliable labels, limiting performance for non-CCC patients. Our findings can improve ChD detection and treatment, particularly in high-prevalence areas.


Asunto(s)
Cardiomiopatía Chagásica , Enfermedad de Chagas , Humanos , Cardiomiopatía Chagásica/diagnóstico , Estudios Retrospectivos , Redes Neurales de la Computación , Enfermedad de Chagas/diagnóstico , Electrocardiografía
2.
Opt Express ; 30(12): 20564-20579, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36224798

RESUMEN

This article describes a memory efficient method for solving large-scale optimization problems that arise when planning scanning-beam lithography processes. These processes require the identification of an exposure pattern that minimizes the difference between a desired and predicted output image, subject to constraints. The number of free variables is equal to the number of pixels, which can be on the order of millions or billions in practical applications. The proposed method splits the problem domain into a number of smaller overlapping subdomains with constrained boundary conditions, which are then solved sequentially using a constrained gradient search method (L-BFGS-B). Computational time is reduced by exploiting natural sparsity in the problem and employing the fast Fourier transform for efficient gradient calculation. When it comes to the trade-off between memory usage and computational time we can make a different trade-off compared to previous methods, where the required memory is reduced by approximately the number of subdomains at the cost of more computations. In an example problem with 30 million variables, the proposed method reduces memory requirements by 67% but increases computation time by 27%. Variations of the proposed method are expected to find applications in the planning of processes such as scanning laser lithography, scanning electron beam lithography, and focused ion beam deposition, for example.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...