Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 14(4): e0070223, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37314185

RESUMEN

Pseudomonas aeruginosa biofilms are common in chronic wound infections and recalcitrant to treatment. Survival of cells within oxygen-limited regions in these biofilms is enabled by extracellular electron transfer (EET), whereby small redox active molecules act as electron shuttles to access distal oxidants. Here, we report that electrochemically controlling the redox state of these electron shuttles, specifically pyocyanin (PYO), can impact cell survival within anaerobic P. aeruginosa biofilms and can act synergistically with antibiotic treatment. Prior results demonstrated that under anoxic conditions, an electrode poised at sufficiently oxidizing potential (+100 mV vs Ag/AgCl) promotes EET within P. aeruginosa biofilms by re-oxidizing PYO for reuse by the cells. Here, when a reducing potential (-400 mV vs Ag/AgCl) was used to disrupt PYO redox cycling by maintaining PYO in the reduced state, we observed a 100-fold decrease in colony forming units within these biofilms compared with those exposed to electrodes poised at +100 mV vs Ag/AgCl. Phenazine-deficient Δphz* biofilms were unaffected by the potential applied to the electrode but were re-sensitized by adding PYO. The effect at -400 mV was exacerbated when biofilms were treated with sub-MICs of a range of antibiotics. Most notably, addition of the aminoglycoside gentamicin in a reductive environment almost completely eradicated wild-type biofilms but had no effect on the survival of Δphz* biofilms in the absence of phenazines. These data suggest that antibiotic treatment combined with the electrochemical disruption of PYO redox cycling, either through the toxicity of accumulated reduced PYO or the disruption of EET, or both, can lead to extensive killing. IMPORTANCE Biofilms provide a protective environment but also present challenges to the cells living within them, such as overcoming nutrient and oxygen diffusion limitations. Pseudomonas aeruginosa overcomes oxygen limitation by secreting soluble redox active phenazines, which act as electron shuttles to distal oxygen. Here, we show that electrochemically blocking the re-oxidation of one of these electron shuttles, pyocyanin, decreases cell survival within biofilms and acts synergistically with gentamicin to kill cells. Our results highlight the importance of the role that the redox cycling of electron shuttles fulfills within P. aeruginosa biofilms.

2.
Appl Environ Microbiol ; 87(17): e0070621, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34190605

RESUMEN

A strain of Geobacter sulfurreducens, an organism capable of respiring solid extracellular substrates, lacking four of five outer membrane cytochrome complexes (extABCD+ strain) grows faster and produces greater current density than the wild type grown under identical conditions. To understand cellular and biofilm modifications in the extABCD+ strain responsible for this increased performance, biofilms grown using electrodes as terminal electron acceptors were sectioned and imaged using electron microscopy to determine changes in thickness and cell density, while parallel biofilms incubated in the presence of nitrogen and carbon isotopes were analyzed using NanoSIMS (nanoscale secondary ion mass spectrometry) to quantify and localize anabolic activity. Long-distance electron transfer parameters were measured for wild-type and extABCD+ biofilms spanning 5-µm gaps. Our results reveal that extABCD+ biofilms achieved higher current densities through the additive effects of denser cell packing close to the electrode (based on electron microscopy), combined with higher metabolic rates per cell compared to the wild type (based on increased rates of 15N incorporation). We also observed an increased rate of electron transfer through extABCD+ versus wild-type biofilms, suggesting that denser biofilms resulting from the deletion of unnecessary multiheme cytochromes streamline electron transfer to electrodes. The combination of imaging, physiological, and electrochemical data confirms that engineered electrogenic bacteria are capable of producing more current per cell and, in combination with higher biofilm density and electron diffusion rates, can produce a higher final current density than the wild type. IMPORTANCE Current-producing biofilms in microbial electrochemical systems could potentially sustain technologies ranging from wastewater treatment to bioproduction of electricity if the maximum current produced could be increased and current production start-up times after inoculation could be reduced. Enhancing the current output of microbial electrochemical systems has been mostly approached by engineering physical components of reactors and electrodes. Here, we show that biofilms formed by a Geobacter sulfurreducens strain producing ∼1.4× higher current than the wild type results from a combination of denser cell packing and higher anabolic activity, enabled by an increased rate of electron diffusion through the biofilms. Our results confirm that it is possible to engineer electrode-specific G. sulfurreducens strains with both faster growth on electrodes and streamlined electron transfer pathways for enhanced current production.


Asunto(s)
Biopelículas , Espacio Extracelular/metabolismo , Geobacter/química , Geobacter/fisiología , Electricidad , Electrodos , Transporte de Electrón , Espacio Extracelular/química , Geobacter/crecimiento & desarrollo
3.
Proc Natl Acad Sci U S A ; 116(41): 20716-20724, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548422

RESUMEN

Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Respiración de la Célula , Electricidad , Electrodos , Geobacter/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Espectrometría de Masa de Ion Secundario/métodos , Fenómenos Bioquímicos , Fuentes de Energía Bioeléctrica , Geobacter/crecimiento & desarrollo , Nanotecnología , Oxidación-Reducción
4.
J Bacteriol ; 200(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30038047

RESUMEN

At least five gene clusters in the Geobacter sulfurreducens genome encode putative "electron conduits" implicated in electron transfer across the outer membrane, each containing a periplasmic multiheme c-type cytochrome, integral outer membrane anchor, and outer membrane redox lipoprotein(s). Markerless single-gene-cluster deletions and all possible multiple-deletion combinations were constructed and grown with soluble Fe(III) citrate, Fe(III) and Mn(IV) oxides, and graphite electrodes poised at +0.24 V and -0.1 V versus the standard hydrogen electrode (SHE). Different gene clusters were necessary for reduction of each electron acceptor. During metal oxide reduction, deletion of the previously described omcBC cluster caused defects, but deletion of additional components in an ΔomcBC background, such as extEFG, were needed to produce defects greater than 50% compared to findings with the wild type. Deletion of all five gene clusters abolished all metal reduction. During electrode reduction, only the ΔextABCD mutant had a severe growth defect at both redox potentials, while this mutation did not affect Fe(III) oxide, Mn(IV) oxide, or Fe(III) citrate reduction. Some mutants containing only one cluster were able to reduce particular terminal electron acceptors better than the wild type, suggesting routes for improvement by targeting specific electron transfer pathways. Transcriptomic comparisons between fumarate and electrode-based growth conditions showed all of these ext clusters to be constitutive, and transcriptional analysis of the triple-deletion strain containing only extABCD detected no significant changes in expression of genes encoding known redox proteins or pilus components. These genetic experiments reveal new outer membrane conduit complexes necessary for growth of G. sulfurreducens, depending on the available extracellular electron acceptor.IMPORTANCE Gram-negative metal-reducing bacteria utilize electron conduits, chains of redox proteins spanning the outer membrane, to transfer electrons to the extracellular surface. Only one pathway for electron transfer across the outer membrane of Geobacter sulfurreducens has been linked to Fe(III) reduction. However, G. sulfurreducens is able to respire a wide array of extracellular substrates. Here we present the first combinatorial genetic analysis of five different electron conduits via creation of new markerless deletion strains and complementation vectors. Multiple conduit gene clusters appear to have overlapping roles, including two that have never been linked to metal reduction. Another recently described cluster (ExtABCD) was the only electron conduit essential during electrode reduction, a substrate of special importance to biotechnological applications of this organism.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Ácido Cítrico/metabolismo , Compuestos Férricos/metabolismo , Geobacter/genética , Compuestos de Manganeso/metabolismo , Óxidos/metabolismo , Electrodos , Eliminación de Gen , Geobacter/metabolismo , Familia de Multigenes , Periplasma/metabolismo , Transcriptoma
5.
J Bacteriol ; 199(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28674067

RESUMEN

Geobacter sulfurreducens generates electrical current by coupling intracellular oxidation of organic acids to the reduction of proteins on the cell surface that are able to interface with electrodes. This ability is attributed to the bacterium's capacity to respire other extracellular electron acceptors that require contact, such as insoluble metal oxides. To directly investigate the genetic basis of electrode-based respiration, we constructed Geobacter sulfurreducens transposon-insertion sequencing (Tn-Seq) libraries for growth, with soluble fumarate or an electrode as the electron acceptor. Libraries with >33,000 unique insertions and an average of 9 insertions/kb allowed an assessment of each gene's fitness in a single experiment. Mutations in 1,214 different genomic features impaired growth with fumarate, and the significance of 270 genes unresolved by annotation due to the presence of one or more functional homologs was determined. Tn-Seq analysis of -0.1 V versus standard hydrogen electrode (SHE) electrode-grown cells identified mutations in a subset of genes encoding cytochromes, processing systems for proline-rich proteins, sensory networks, extracellular structures, polysaccharides, and metabolic enzymes that caused at least a 50% reduction in apparent growth rate. Scarless deletion mutants of select genes identified via Tn-Seq revealed a new putative porin-cytochrome conduit complex (extABCD) crucial for growth with electrodes, which was not required for Fe(III) oxide reduction. In addition, four mutants lacking components of a putative methyl-accepting chemotaxis-cyclic dinucleotide sensing network (esnABCD) were defective in electrode colonization but grew normally with Fe(III) oxides. These results suggest that G. sulfurreducens possesses distinct mechanisms for recognition, colonization, and reduction of electrodes compared to Fe(III) oxides.IMPORTANCE Since metal oxide electron acceptors are insoluble, one hypothesis is that cells sense and reduce metals using the same molecular mechanisms used to form biofilms on electrodes and produce electricity. However, by simultaneously comparing thousands of Geobacter sulfurreducens transposon mutants undergoing electrode-dependent respiration, we discovered new cytochromes and chemosensory proteins supporting growth with electrodes that are not required for metal respiration. This supports an emerging model where G. sulfurreducens recognizes surfaces and forms conductive biofilms using mechanisms distinct from those used for growth with metal oxides. These findings provide a possible explanation for studies that correlate electricity generation with syntrophic interspecies electron transfer by Geobacter and reveal many previously unrecognized targets for engineering this useful capability in other organisms.


Asunto(s)
Compuestos Férricos/metabolismo , Genoma Bacteriano , Geobacter/genética , Geobacter/metabolismo , Mutación , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Elementos Transponibles de ADN , Electrodos , Transporte de Electrón , Fumaratos/metabolismo , Fumaratos/farmacología , Biblioteca Genómica , Geobacter/efectos de los fármacos , Geobacter/crecimiento & desarrollo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...