Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Oncol ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790138

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, characterized by late diagnosis and poor treatment response. Surgery is the only curative approach, only available to early-diagnosed patients. Current therapies have limited effects, cause severe toxicities, and minimally improve overall survival. Understanding of splicing machinery alterations in PDAC remains incomplete. Here, we comprehensively examined 59 splicing machinery components, uncovering dysregulation in pre-mRNA processing factor 8 (PRPF8) and RNA-binding motif protein X-linked (RBMX). Their downregulated expression was linked to poor prognosis and malignancy features, including tumor stage, invasion and metastasis, and associated with poorer survival and the mutation of key PDAC genes. Experimental modulation of these splicing factors in pancreatic cancer cell lines reverted their expression to non-tumor levels and resulted in decreased key tumor-related features. These results provide evidence that the splicing machinery is altered in PDAC, wherein PRPF8 and RBMX emerge as candidate actionable therapeutic targets.

2.
Mol Cancer Ther ; 23(6): 791-808, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38412481

RESUMEN

Therapies that abrogate persistent androgen receptor (AR) signaling in castration-resistant prostate cancer (CRPC) remain an unmet clinical need. The N-terminal domain of the AR that drives transcriptional activity in CRPC remains a challenging therapeutic target. Herein we demonstrate that BCL-2-associated athanogene-1 (BAG-1) mRNA is highly expressed and associates with signaling pathways, including AR signaling, that are implicated in the development and progression of CRPC. In addition, interrogation of geometric and physiochemical properties of the BAG domain of BAG-1 isoforms identifies it to be a tractable but challenging drug target. Furthermore, through BAG-1 isoform mouse knockout studies, we confirm that BAG-1 isoforms regulate hormone physiology and that therapies targeting the BAG domain will be associated with limited "on-target" toxicity. Importantly, the postulated inhibitor of BAG-1 isoforms, Thio-2, suppressed AR signaling and other important pathways implicated in the development and progression of CRPC to reduce the growth of treatment-resistant prostate cancer cell lines and patient-derived models. However, the mechanism by which Thio-2 elicits the observed phenotype needs further elucidation as the genomic abrogation of BAG-1 isoforms was unable to recapitulate the Thio-2-mediated phenotype. Overall, these data support the interrogation of related compounds with improved drug-like properties as a novel therapeutic approach in CRPC, and further highlight the clinical potential of treatments that block persistent AR signaling which are currently undergoing clinical evaluation in CRPC.


Asunto(s)
Progresión de la Enfermedad , Neoplasias de la Próstata Resistentes a la Castración , Transducción de Señal , Masculino , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Humanos , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proliferación Celular , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
3.
Cancer Lett ; 584: 216604, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244911

RESUMEN

Novel biomarkers and therapeutic strategies for prostate-cancer (PCa) are required to overcome its lethal progression. The dysregulation/implication of the RNA-Exosome-complex (REC; cellular machinery controlling the 3'-5'processing/degradation of most RNAs) in different cancer-types, including PCa, is poorly known. Herein, different cellular/molecular/preclinical approaches with human PCa-samples (tissues and/or plasma of 7 independent cohorts), and in-vitro/in-vivo PCa-models were used to comprehensively characterize the REC-profile and explore its role in PCa. Moreover, isoginkgetin (REC-inhibitor) effects were evaluated on PCa-cells. We demonstrated a specific dysregulation of the REC-components in PCa-tissues, identifying the Poly(A)-Binding-Protein-Nuclear 1 (PABPN1) factor as a critical regulator of major cancer hallmarks. PABPN1 is consistently overexpressed in different human PCa-cohorts and associated with poor-progression, invasion and metastasis. PABPN1 silencing decreased relevant cancer hallmarks in multiple PCa-models (proliferation/migration/tumourspheres/colonies, etc.) through the modulation of key cancer-related lncRNAs (PCA3/FALEC/DLEU2) and mRNAs (CDK2/CDK6/CDKN1A). Plasma PABPN1 levels were altered in patients with metastatic and tumour-relapse. Finally, pharmacological inhibition of REC-activity drastically inhibited PCa-cell aggressiveness. Altogether, the REC is drastically dysregulated in PCa, wherein this novel molecular event/mechanism, especially PABPN1 alteration, may be potentially exploited as a novel prognostic and therapeutic tool for PCa.


Asunto(s)
Exosomas , Neoplasias de la Próstata , Masculino , Humanos , Complejo Multienzimático de Ribonucleasas del Exosoma , Exosomas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Recurrencia Local de Neoplasia , Neoplasias de la Próstata/patología , ARN Mensajero , Proteína I de Unión a Poli(A)/metabolismo
4.
J Clin Invest ; 133(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37751307

RESUMEN

Aberrant androgen receptor (AR) signaling drives prostate cancer (PC), and it is a key therapeutic target. Although initially effective, the generation of alternatively spliced AR variants (AR-Vs) compromises efficacy of treatments. In contrast to full-length AR (AR-FL), AR-Vs constitutively activate androgenic signaling and are refractory to the current repertoire of AR-targeting therapies, which together drive disease progression. There is an unmet clinical need, therefore, to develop more durable PC therapies that can attenuate AR-V function. Exploiting the requirement of coregulatory proteins for AR-V function has the capacity to furnish tractable routes for attenuating persistent oncogenic AR signaling in advanced PC. DNA-PKcs regulates AR-FL transcriptional activity and is upregulated in both early and advanced PC. We hypothesized that DNA-PKcs is critical for AR-V function. Using a proximity biotinylation approach, we demonstrated that the DNA-PK holoenzyme is part of the AR-V7 interactome and is a key regulator of AR-V-mediated transcription and cell growth in models of advanced PC. Crucially, we provide evidence that DNA-PKcs controls global splicing and, via RBMX, regulates the maturation of AR-V and AR-FL transcripts. Ultimately, our data indicate that targeting DNA-PKcs attenuates AR-V signaling and provide evidence that DNA-PKcs blockade is an effective therapeutic option in advanced AR-V-positive patients with PC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Dominio Catalítico , Línea Celular Tumoral , Andrógenos/uso terapéutico , ADN , Regulación Neoplásica de la Expresión Génica
5.
EBioMedicine ; 90: 104484, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36907105

RESUMEN

BACKGROUND: Glioblastoma is one of the most devastating and incurable cancers due to its aggressive behaviour and lack of available therapies, being its overall-survival from diagnosis ∼14-months. Thus, identification of new therapeutic tools is urgently needed. Interestingly, metabolism-related drugs (e.g., metformin/statins) are emerging as efficient antitumour agents for several cancers. Herein, we evaluated the in vitro/in vivo effects of metformin and/or statins on key clinical/functional/molecular/signalling parameters in glioblastoma patients/cells. METHODS: An exploratory-observational-randomized retrospective glioblastoma patient cohort (n = 85), human glioblastoma/non-tumour brain human cells (cell lines/patient-derived cell cultures), mouse astrocytes progenitor cell cultures, and a preclinical xenograft glioblastoma mouse model were used to measure key functional parameters, signalling-pathways and/or antitumour progression in response to metformin and/or simvastatin. FINDINGS: Metformin and simvastatin exerted strong antitumour actions in glioblastoma cell cultures (i.e., proliferation/migration/tumoursphere/colony-formation/VEGF-secretion inhibition and apoptosis/senescence induction). Notably, their combination additively altered these functional parameters vs. individual treatments. These actions were mediated by the modulation of key oncogenic signalling-pathways (i.e., AKT/JAK-STAT/NF-κB/TGFß-pathways). Interestingly, an enrichment analysis uncovered a TGFß-pathway activation, together with AKT inactivation, in response to metformin + simvastatin combination, which might be linked to an induction of the senescence-state, the associated secretory-phenotype, and to the dysregulation of spliceosome components. Remarkably, the antitumour actions of metformin + simvastatin combination were also observed in vivo [i.e., association with longer overall-survival in human, and reduction in tumour-progression in a mouse model (reduced tumour-size/weight/mitosis-number, and increased apoptosis)]. INTERPRETATION: Altogether, metformin and simvastatin reduce aggressiveness features in glioblastomas, being this effect significantly more effective (in vitro/in vivo) when both drugs are combined, offering a clinically relevant opportunity that should be tested for their use in humans. FUNDING: Spanish Ministry of Science, Innovation and Universities; Junta de Andalucía; CIBERobn (CIBER is an initiative of Instituto de Salud Carlos III, Spanish Ministry of Health, Social Services and Equality).


Asunto(s)
Glioblastoma , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Metformina , Humanos , Ratones , Animales , Metformina/farmacología , Metformina/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Proteínas Proto-Oncogénicas c-akt , Simvastatina/farmacología , Simvastatina/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Estudios Retrospectivos , Factor de Crecimiento Transformador beta/farmacología , Línea Celular Tumoral , Proliferación Celular
6.
Transl Res ; 253: 68-79, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36089245

RESUMEN

Prostate cancer (PCa) is one of the leading causes of cancer-related deaths among men. Consequently, the identification of novel molecular targets for treatment is urgently needed to improve patients' outcomes. Our group recently reported that some elements of the cellular machinery controlling alternative-splicing might be useful as potential novel therapeutic tools against advanced PCa. However, the presence and functional role of RBM22, a key spliceosome component, in PCa remains unknown. Therefore, RBM22 levels were firstly interrogated in 3 human cohorts and 2 preclinical mouse models (TRAMP/Pbsn-Myc). Results were validated in in silico using 2 additional cohorts. Then, functional effects in response to RBM22 overexpression (proliferation, migration, tumorspheres/colonies formation) were tested in PCa models in vitro (LNCaP, 22Rv1, and PC-3 cell-lines) and in vivo (xenograft). High throughput methods (ie, RNA-seq, nCounter PanCancer Pathways Panel) were performed in RBM22 overexpressing cells and xenograft tumors. We found that RBM22 levels were down-regulated (mRNA and protein) in PCa samples, and were inversely associated with key clinical aggressiveness features. Consistently, a gradual reduction of RBM22 from non-tumor to poorly differentiated PCa samples was observed in transgenic models (TRAMP/Pbsn-Myc). Notably, RBM22 overexpression decreased aggressiveness features in vitro, and in vivo. These actions were associated with the splicing dysregulation of numerous genes and to the downregulation of critical upstream regulators of cell-cycle (i.e., CDK1/CCND1/EPAS1). Altogether, our data demonstrate that RBM22 plays a critical pathophysiological role in PCa and invites to suggest that targeting negative regulators of RBM22 expression/activity could represent a novel therapeutic strategy to tackle this disease.


Asunto(s)
Empalme Alternativo , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Empalme Alternativo/genética , Neoplasias de la Próstata/metabolismo , Empalme del ARN , Empalmosomas , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
7.
Wiley Interdiscip Rev RNA ; 14(3): e1760, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36063028

RESUMEN

Bladder cancer is the most common malignancy of the urinary tract worldwide. The therapeutic options to tackle this disease comprise surgery, intravesical or systemic chemotherapy, and immunotherapy. Unfortunately, a wide number of patients ultimately become resistant to these treatments and develop aggressive metastatic disease, presenting a poor prognosis. Therefore, the identification of novel therapeutic approaches to tackle this devastating pathology is urgently needed. However, a significant limitation is that the progression and drug response of bladder cancer is strongly associated with its intrinsic molecular heterogeneity. In this sense, RNA splicing is recently gaining importance as a critical hallmark of cancer since can have a significant clinical value. In fact, a profound dysregulation of the splicing process has been reported in bladder cancer, especially in the expression of certain key splicing variants and circular RNAs with a potential clinical value as diagnostic/prognostic biomarkers or therapeutic targets in this pathology. Indeed, some authors have already evidenced a profound antitumor effect by targeting some splicing factors (e.g., PTBP1), mRNA splicing variants (e.g., PKM2, HYAL4-v1), and circular RNAs (e.g., circITCH, circMYLK), which illustrates new possibilities to significantly improve the management of this pathology. This review represents the first detailed overview of the splicing process and its alterations in bladder cancer, and highlights opportunities for the development of novel diagnostic/prognostic biomarkers and their clinical potential for the treatment of this devastating cancer type. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.


Asunto(s)
Empalme Alternativo , Neoplasias de la Vejiga Urinaria , Humanos , Empalme Alternativo/genética , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , ARN/metabolismo , Biomarcadores/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo
8.
Transl Res ; 251: 63-73, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35882361

RESUMEN

Dysregulation of the splicing machinery is emerging as a hallmark in cancer due to its association with multiple dysfunctions in tumor cells. Inappropriate function of this machinery can generate tumor-driving splicing variants and trigger oncogenic actions. However, its role in pancreatic neuroendocrine tumors (PanNETs) is poorly defined. In this study we aimed to characterize the expression pattern of a set of splicing machinery components in PanNETs, and their relationship with aggressiveness features. A qPCR-based array was first deployed to determine the expression levels of components of the major (n = 13) and minor spliceosome (n = 4) and associated splicing factors (n = 27), using a microfluidic technology in 20 PanNETs and non-tumoral adjacent samples. Subsequently, in vivo and in vitro models were applied to explore the pathophysiological role of NOVA1. Expression analysis revealed that a substantial proportion of splicing machinery components was altered in tumors. Notably, key splicing factors were overexpressed in PanNETs samples, wherein their levels correlated with clinical and malignancy features. Using in vivo and in vitro assays, we demonstrate that one of those altered factors, NOVA1, is tightly related to cell proliferation, alters pivotal signaling pathways and interferes with responsiveness to drug treatment in PanNETs, suggesting a role for this factor in the aggressiveness of these tumors and its suitability as therapeutic target. Altogether, our results unveil a severe alteration of the splicing machinery in PanNETs and identify the putative relevance of NOVA1 in tumor development/progression, which could provide novel avenues to develop diagnostic biomarkers and therapeutic tools for this pathology.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/terapia , Proteínas de Unión al ARN/genética , Proliferación Celular/genética , Factores de Empalme de ARN/genética , Neoplasias Pancreáticas/patología , Antígeno Ventral Neuro-Oncológico
9.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361790

RESUMEN

Somatostatin (SST), cortistatin (CORT), and their receptors (SSTR1-5/sst5TMD4-TMD5) comprise a multifactorial hormonal system involved in the regulation of numerous pathophysiological processes. Certain components of this system are dysregulated and play critical roles in the development/progression of different endocrine-related cancers. However, the presence and therapeutic role of this regulatory system in prostate cancer (PCa) remain poorly explored. Accordingly, we performed functional (proliferation/migration/colonies-formation) and mechanistic (Western-blot/qPCR/microfluidic-based qPCR-array) assays in response to SST and CORT treatments and CORT-silencing (using specific siRNA) in different PCa cell models [androgen-dependent (AD): LNCaP; androgen-independent (AI)/castration-resistant PCa (CRPC): 22Rv1 and PC-3], and/or in the normal-like prostate cell-line RWPE-1. Moreover, the expression of SST/CORT system components was analyzed in PCa samples from two different patient cohorts [internal (n = 69); external (Grasso, n = 88)]. SST and CORT treatment inhibited key functional/aggressiveness parameters only in AI-PCa cells. Mechanistically, antitumor capacity of SST/CORT was associated with the modulation of oncogenic signaling pathways (AKT/JNK), and with the significant down-regulation of critical genes involved in proliferation/migration and PCa-aggressiveness (e.g., MKI67/MMP9/EGF). Interestingly, CORT was highly expressed, while SST was not detected, in all prostate cell-lines analyzed. Consistently, endogenous CORT was overexpressed in PCa samples (compared with benign-prostatic-hyperplasia) and correlated with key clinical (i.e., metastasis) and molecular (i.e., SSTR2/SSTR5 expression) parameters. Remarkably, CORT-silencing drastically enhanced proliferation rate and blunted the antitumor activity of SST-analogues (octreotide/pasireotide) in AI-PCa cells. Altogether, we provide evidence that SST/CORT system and SST-analogues could represent a potential therapeutic option for PCa, especially for CRPC, and that endogenous CORT could act as an autocrine/paracrine regulator of PCa progression.


Asunto(s)
Neuropéptidos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Andrógenos , Receptores de Somatostatina/genética , Somatostatina/metabolismo , Neuropéptidos/metabolismo , Línea Celular Tumoral , Proliferación Celular
10.
Clin Cancer Res ; 28(16): 3509-3525, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35695870

RESUMEN

PURPOSE: Therapies targeting the androgen receptor (AR) have improved the outcome for patients with castration-sensitive prostate cancer (CSPC). Expression of the constitutively active AR splice variant-7 (AR-V7) has shown clinical utility as a predictive biomarker of AR-targeted therapy resistance in castration-resistant prostate cancer (CRPC), but its importance in CSPC remains understudied. EXPERIMENTAL DESIGN: We assessed different approaches to quantify AR-V7 mRNA and protein in prostate cancer cell lines, patient-derived xenograft (PDX) models, publicly available cohorts, and independent institutional clinical cohorts, to identify reliable approaches for detecting AR-V7 mRNA and protein and its association with clinical outcome. RESULTS: In CSPC and CRPC cohorts, AR-V7 mRNA was much less abundant when detected using reads across splice boundaries than when considering isoform-specific exonic reads. The RM7 AR-V7 antibody had increased sensitivity and specificity for AR-V7 protein detection by immunohistochemistry (IHC) in CRPC cohorts but rarely identified AR-V7 protein reactivity in CSPC cohorts, when compared with the EPR15656 AR-V7 antibody. Using multiple CRPC PDX models, we demonstrated that AR-V7 expression was exquisitely sensitive to hormonal manipulation. In CSPC institutional cohorts, AR-V7 protein quantification by either assay was associated neither with time to development of castration resistance nor with overall survival, and intense neoadjuvant androgen-deprivation therapy did not lead to significant AR-V7 mRNA or staining following treatment. Neither pre- nor posttreatment AR-V7 levels were associated with volumes of residual disease after therapy. CONCLUSIONS: This study demonstrates that further analytical validation and clinical qualification are required before AR-V7 can be considered for clinical use in CSPC as a predictive biomarker.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Antagonistas de Andrógenos/uso terapéutico , Biomarcadores , Castración , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
11.
Clin Cancer Res ; 28(14): 3104-3115, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35552383

RESUMEN

PURPOSE: Prostate-specific membrane antigen (PSMA) targeting therapies such as Lutetium-177 (177Lu)-PSMA-617 are affecting outcomes from metastatic castration-resistant prostate cancer (mCRPC). However, a significant subset of patients have prostate cancer cells lacking PSMA expression, raising concerns about treatment resistance attributable at least in part to heterogeneous PSMA expression. We have previously demonstrated an association between high PSMA expression and DNA damage repair defects in mCRPC biopsies and therefore hypothesized that DNA damage upregulates PSMA expression. EXPERIMENTAL DESIGN: To test this relationship between PSMA and DNA damage we conducted a screen of 147 anticancer agents (NCI/NIH FDA-approved anticancer "Oncology Set") and treated tumor cells with repeated ionizing irradiation. RESULTS: The topoisomerase-2 inhibitors, daunorubicin and mitoxantrone, were identified from the screen to upregulate PSMA protein expression in castration-resistant LNCaP95 cells; this result was validated in vitro in LNCaP, LNCaP95, and 22Rv1 cell lines and in vivo using an mCRPC patient-derived xenograft model CP286 identified to have heterogeneous PSMA expression. As double-strand DNA break induction by topoisomerase-2 inhibitors upregulated PSMA, we next studied the impact of ionizing radiation on PSMA expression; this also upregulated PSMA protein expression in a dose-dependent fashion. CONCLUSIONS: The results presented herein are the first, to our knowledge, to demonstrate that PSMA is upregulated in response to double-strand DNA damage by anticancer treatment. These data support the study of rational combinations that maximize the antitumor activity of PSMA-targeted therapeutic strategies by upregulating PSMA.


Asunto(s)
Antígenos de Superficie , Antineoplásicos , Daño del ADN , Glutamato Carboxipeptidasa II , Neoplasias de la Próstata Resistentes a la Castración , Animales , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Glutamato Carboxipeptidasa II/genética , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Masculino , Ratones , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Mol Ther Nucleic Acids ; 27: 1164-1178, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35282415

RESUMEN

Prostate-specific antigen (PSA) is the gold-standard marker to screen prostate cancer (PCa) nowadays. Unfortunately, its lack of specificity and sensitivity makes the identification of novel tools to diagnose PCa an urgent medical need. In this context, microRNAs (miRNAs) have emerged as potential sources of non-invasive diagnostic biomarkers in several pathologies. Therefore, this study was aimed at assessing for the first time the dysregulation of the whole plasma miRNome in PCa patients and its putative implication in PCa from a personalized perspective (i.e., obesity condition). Plasma miRNome from a discovery cohort (18 controls and 19 PCa patients) was determined using an Affymetrix-miRNA array, showing that the expression of 104 miRNAs was significantly altered, wherein six exhibited a significant receiver operating characteristic (ROC) curve to distinguish between control and PCa patients (area under the curve [AUC] = 1). Then, a systematic validation using an independent cohort (135 controls and 160 PCa patients) demonstrated that miR-107 was the most profoundly altered miRNA in PCa (AUC = 0.75). Moreover, miR-107 levels significantly outperformed the ability of PSA to distinguish between control and PCa patients and correlated with relevant clinical parameters (i.e., PSA). These differences were more pronounced when considering only obese patients (BMI > 30). Interestingly, miR-107 levels were reduced in PCa tissues versus non-tumor tissues (n = 84) and in PCa cell lines versus non-tumor cells. In vitro miR-107 overexpression altered key aggressiveness features in PCa cells (i.e., proliferation, migration, and tumorospheres formation) and modulated the expression of important genes involved in PCa pathophysiology (i.e., lipid metabolism [i.e., FASN] and splicing process). Altogether, miR-107 might represent a novel and useful personalized diagnostic and prognostic biomarker and a potential therapeutic tool in PCa, especially in obese patients.

13.
J Exp Clin Cancer Res ; 41(1): 39, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35086552

RESUMEN

BACKGROUND: Glioblastoma is one of the most devastating cancer worldwide based on its locally aggressive behavior and because it cannot be cured by current therapies. Defects in alternative splicing process are frequent in cancer. Recently, we demonstrated that dysregulation of the spliceosome is directly associated with glioma development, progression, and aggressiveness. METHODS: Different human cohorts and a dataset from different glioma mouse models were analyzed to determine the mutation frequency as well as the gene and protein expression levels between tumor and control samples of the splicing-factor-3B-subunit-1 (SF3B1), an essential and druggable spliceosome component. SF3B1 expression was also explored at the single-cell level across all cell subpopulations and transcriptomic programs. The association of SF3B1 expression with relevant clinical data (e.g., overall survival) in different human cohorts was also analyzed. Different functional (proliferation/migration/tumorspheres and colonies formation/VEGF secretion/apoptosis) and mechanistic (gene expression/signaling pathways) assays were performed in three different glioblastomas cell models (human primary cultures and cell lines) in response to SF3B1 blockade (using pladienolide B treatment). Moreover, tumor progression and formation were monitored in response to SF3B1 blockade in two preclinical xenograft glioblastoma mouse models. RESULTS: Our data provide novel evidence demonstrating that the splicing-factor-3B-subunit-1 (SF3B1, an essential and druggable spliceosome component) is low-frequency mutated in human gliomas (~ 1 %) but widely overexpressed in glioblastoma compared with control samples from the different human cohorts and mouse models included in the present study, wherein SF3B1 levels are associated with key molecular and clinical features (e.g., overall survival, poor prognosis and/or drug resistance). Remarkably, in vitro and in vivo blockade of SF3B1 activity with pladienolide B drastically altered multiple glioblastoma pathophysiological processes (i.e., reduction in proliferation, migration, tumorspheres formation, VEGF secretion, tumor initiation and increased apoptosis) likely by suppressing AKT/mTOR/ß-catenin pathways, and an imbalance of BCL2L1 splicing. CONCLUSIONS: Together, we highlight SF3B1 as a potential diagnostic and prognostic biomarker and an efficient pharmacological target in glioblastoma, offering a clinically relevant opportunity worth to be explored in humans.


Asunto(s)
Glioblastoma/genética , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína bcl-X/metabolismo , beta Catenina/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Glioblastoma/mortalidad , Humanos , Ratones , Análisis de Supervivencia , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Annu Rev Pharmacol Toxicol ; 62: 131-153, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34449248

RESUMEN

Owing to the development of multiple novel therapies, there has been major progress in the treatment of advanced prostate cancer over the last two decades; however, the disease remains invariably fatal. Androgens and the androgen receptor (AR) play a critical role in prostate carcinogenesis, and targeting the AR signaling axis with abiraterone, enzalutamide, darolutamide, and apalutamide has improved outcomes for men with this lethal disease. Targeting the AR and elucidating mechanisms of resistance to these agents remain central to drug development efforts. This review provides an overview of the evolution and current approaches for targeting the AR in advanced prostate cancer. It describes the biology of AR signaling, explores AR-targeting resistance mechanisms, and discusses future perspectives and promising novel therapeutic strategies.


Asunto(s)
Receptores Androgénicos , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos
15.
J Exp Clin Cancer Res ; 40(1): 382, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857016

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, requiring novel treatments to target both cancer cells and cancer stem cells (CSCs). Altered splicing is emerging as both a novel cancer hallmark and an attractive therapeutic target. The core splicing factor SF3B1 is heavily altered in cancer and can be inhibited by Pladienolide-B, but its actionability in PDAC is unknown. We explored the presence and role of SF3B1 in PDAC and interrogated its potential as an actionable target. METHODS: SF3B1 was analyzed in PDAC tissues, an RNA-seq dataset, and publicly available databases, examining associations with splicing alterations and key features/genes. Functional assays in PDAC cell lines and PDX-derived CSCs served to test Pladienolide-B treatment effects in vitro, and in vivo in zebrafish and mice. RESULTS: SF3B1 was overexpressed in human PDAC and associated with tumor grade and lymph-node involvement. SF3B1 levels closely associated with distinct splicing event profiles and expression of key PDAC players (KRAS, TP53). In PDAC cells, Pladienolide-B increased apoptosis and decreased multiple tumor-related features, including cell proliferation, migration, and colony/sphere formation, altering AKT and JNK signaling, and favoring proapoptotic splicing variants (BCL-XS/BCL-XL, KRASa/KRAS, Δ133TP53/TP53). Importantly, Pladienolide-B similarly impaired CSCs, reducing their stemness capacity and increasing their sensitivity to chemotherapy. Pladienolide-B also reduced PDAC/CSCs xenograft tumor growth in vivo in zebrafish and in mice. CONCLUSION: SF3B1 overexpression represents a therapeutic vulnerability in PDAC, as altered splicing can be targeted with Pladienolide-B both in cancer cells and CSCs, paving the way for novel therapies for this lethal cancer.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Células Madre Neoplásicas/metabolismo , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Adenocarcinoma/patología , Adulto , Anciano , Animales , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Pez Cebra
16.
Antioxidants (Basel) ; 10(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34572980

RESUMEN

A high adherence to a Mediterranean diet has been related to numerous beneficial effects in human health, including a lower incidence and mortality of prostate cancer (PCa). Olive oil is an important source of phenolic bioactive compounds, mainly hydroxytyrosol (HT), of this diet. Because of the growing interest of this compound and its derivatives as a cancer chemopreventive agent, we aimed to compare the in vitro effect of HT isolated from olive mill wastewaters and five semisynthetic alkyl ether, ester, and nitro-derivatives against prostate cancer (PCa) cell lines. The effect in cell proliferation was determined in RWPE-1, LNCaP, 22Rv1, and PC-3 cells by resazurin assay, the effect in cell migration by wound healing assay, and tumorsphere and colony formation were evaluated. The changes in key signaling pathways involved in carcinogenesis were assessed by using a phosphorylation pathway profiling array and by Western blotting. Antiproliferative effects of HT and two lipophilic derivatives [hydroxytyrosyl acetate (HT-Ac)/ethyl hydroxytyrosyl ether (HT-Et)] were significantly higher in cancerous PC-3 and 22Rv1 cells than in non-malignant RWPE-1 cells. HT/HT-Ac/HT-Et significantly reduced migration capacity in RWPE-1 and PC-3 and prostatosphere size and colony formation in 22Rv1, whereas only HT-Ac and HT-Et reduced these functional parameters in PC-3. The cytotoxic effect in 22Rv1 cells was correlated with modifications in the phosphorylation pattern of key proteins, including ERK1/2 and AKT. Consistently, HT-Ac and HT-Et decreased p-AKT levels in PC-3. In sum, our results suggest that HT and its lipophilic derivatives could be considered as potential therapeutic tools in PCa.

17.
J Clin Endocrinol Metab ; 106(12): e4956-e4968, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34255835

RESUMEN

CONTEXT: Recent studies emphasize the importance of considering the metabolic status to develop personalized medicine approaches. This is especially relevant in prostate cancer (PCa), wherein the diagnostic capability of prostate-specific antigen (PSA) dramatically drops when considering patients with PSA levels ranging from 3 to 10 ng/mL, the so-called grey zone. Hence, additional noninvasive diagnostic and/or prognostic PCa biomarkers are urgently needed, especially in the metabolic-status context. OBJECTIVE: To assess the potential relation of urine In1-ghrelin (a ghrelin-splicing variant) levels with metabolic-related/pathological conditions (eg, obesity, diabetes, body mass index, insulin and glucose levels) and to define its potential clinical value in PCa (diagnostic/prognostic capacity) and relationship with PCa risk in patients with PSA in the grey zone. METHODS: Urine In1-ghrelin levels were measured by radioimmunoassay in a clinically, metabolically, pathologically well-characterized cohort of patients without (n = 397) and with (n = 213) PCa with PSA in the grey zone. RESULTS: Key obesity-related factors associated with PCa risk (BMI, diabetes, glucose and insulin levels) were strongly correlated to In1-ghrelin levels. Importantly, In1-ghrelin levels were higher in PCa patients compared to control patients with suspect of PCa but negative biopsy). Moreover, high In1-ghrelin levels were associated with increased PCa risk and linked to PCa aggressiveness (eg, tumor stage, lymphovascular invasion). In1-ghrelin levels added significant diagnostic value to a clinical model consisting of age, suspicious digital rectal exam, previous biopsy, and PSA levels. Furthermore, a multivariate model consisting of clinical and metabolic variables, including In1-ghrelin levels, showed high specificity and sensitivity to diagnose PCa (area under the receiver operating characteristic curve = 0.740). CONCLUSIONS: Urine In1-ghrelin levels are associated with obesity-related factors and PCa risk and aggressiveness and could represent a novel and valuable noninvasive PCa biomarker, as well as a potential link in the pathophysiological relationship between obesity and PCa.


Asunto(s)
Empalme Alternativo , Biomarcadores de Tumor/análisis , Diabetes Mellitus Tipo 2/fisiopatología , Ghrelina/genética , Obesidad/fisiopatología , Neoplasias de la Próstata/epidemiología , Anciano , Glucemia/análisis , Índice de Masa Corporal , Estudios de Casos y Controles , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Isoformas de Proteínas , Curva ROC , Estudios Retrospectivos , España/epidemiología
18.
Curr Opin Pharmacol ; 60: 17-26, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34311387

RESUMEN

Metabolic syndrome is associated with chronic diseases, including type 2 diabetes, cardiovascular diseases, and cancer. This review summarizes the current evidence on the antitumor effects of some relevant drugs currently used to manage metabolic-related pathologies (i.e. insulin and its analogs, metformin, statins, etc.) in endocrine-related cancers including breast cancer, prostate cancer, pituitary cancer, ovarian cancer, and neuroendocrine neoplasms. Although current evidence does not provide a clear antitumor role of several of these drugs, metformin seems to be a promising chemopreventive and adjuvant agent in cancer management, modulating tumor cell metabolism and microenvironment, through both AMP-activated protein kinase-dependent and -independent mechanisms. Moreover, its combination with statins might represent a promising therapeutic strategy to tackle the progression of endocrine-related tumors. However, further studies are needed to endorse the clinical relevance of these drugs as adjuvants for cancer chemotherapy.


Asunto(s)
Neoplasias de las Glándulas Endocrinas , Hipoglucemiantes , Metformina , Diabetes Mellitus Tipo 2 , Neoplasias de las Glándulas Endocrinas/prevención & control , Neoplasias de las Glándulas Endocrinas/terapia , Humanos , Hipoglucemiantes/uso terapéutico , Insulina , Metformina/uso terapéutico , Microambiente Tumoral
19.
Cancer Res ; 81(4): 1087-1100, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33822745

RESUMEN

Endocrine resistance (EnR) in advanced prostate cancer is fatal. EnR can be mediated by androgen receptor (AR) splice variants, with AR splice variant 7 (AR-V7) arguably the most clinically important variant. In this study, we determined proteins key to generating AR-V7, validated our findings using clinical samples, and studied splicing regulatory mechanisms in prostate cancer models. Triangulation studies identified JMJD6 as a key regulator of AR-V7, as evidenced by its upregulation with in vitro EnR, its downregulation alongside AR-V7 by bromodomain inhibition, and its identification as a top hit of a targeted siRNA screen of spliceosome-related genes. JMJD6 protein levels increased (P < 0.001) with castration resistance and were associated with higher AR-V7 levels and shorter survival (P = 0.048). JMJD6 knockdown reduced prostate cancer cell growth, AR-V7 levels, and recruitment of U2AF65 to AR pre-mRNA. Mutagenesis studies suggested that JMJD6 activity is key to the generation of AR-V7, with the catalytic machinery residing within a druggable pocket. Taken together, these data highlight the relationship between JMJD6 and AR-V7 in advanced prostate cancer and support further evaluation of JMJD6 as a therapeutic target in this disease. SIGNIFICANCE: This study identifies JMJD6 as being critical for the generation of AR-V7 in prostate cancer, where it may serve as a tractable target for therapeutic intervention.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/fisiología , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores Androgénicos/genética , Empalme Alternativo , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Estudios de Cohortes , Inhibidores Enzimáticos/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/genética , Masculino , Terapia Molecular Dirigida , Oxigenasas/genética , Oxigenasas/fisiología , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/mortalidad , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo , Estudios Retrospectivos
20.
J Clin Endocrinol Metab ; 106(2): e696-e710, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33247590

RESUMEN

CONTEXT: Prostate cancer (PCa) is one of the leading causes of cancer-related death among the male population worldwide. Unfortunately, current medical treatments fail to prevent PCa progression in a high percentage of cases; therefore, new therapeutic tools to tackle PCa are urgently needed. Biguanides and statins have emerged as antitumor agents for several endocrine-related cancers. OBJECTIVE: To evaluate: (1) the putative in vivo association between metformin and/or statins treatment and key tumor and clinical parameters and (2) the direct effects of different biguanides (metformin/buformin/phenformin), statins (atorvastatin/simvastatin/lovastatin), and their combination, on key functional endpoints and associated signalling mechanisms. METHODS: An exploratory/observational retrospective cohort of patients with PCa (n = 75) was analyzed. Moreover, normal and tumor prostate cells (normal [RWPE-cells/primary prostate cell cultures]; tumor [LNCaP/22RV1/PC3/DU145 cell lines]) were used to measure proliferation/migration/tumorsphere-formation/signalling pathways. RESULTS: The combination of metformin+statins in vivo was associated to lower Gleason score and longer biochemical recurrence-free survival. Moreover, biguanides and statins exerted strong antitumor actions (ie, inhibition of proliferation/migration/tumorsphere formation) on PCa cells, and that their combination further decreased; in addition, these functional parameters compared with the individual treatments. These actions were mediated through modulation of key oncogenic and metabolic signalling pathways (ie, AR/mTOR/AMPK/AKT/ERK) and molecular mediators (MKI67/cMYC/androgen receptor/cell-cycle inhibitors). CONCLUSIONS: Biguanides and statins significantly reduced tumor aggressiveness in PCa, with this effect being more potent (in vitro and in vivo) when both compounds are combined. Therefore, given the demonstrated clinical safety of biguanides and statins, our results suggest a potential therapeutic role of these compounds, especially their combination, for the treatment of PCa.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biguanidas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Adenocarcinoma/diagnóstico , Adenocarcinoma/patología , Adenocarcinoma/cirugía , Anciano , Biguanidas/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimioterapia Adyuvante , Estudios de Cohortes , Terapia Combinada , Estudios Transversales , Sinergismo Farmacológico , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Masculino , Persona de Mediana Edad , Células PC-3 , Proyectos Piloto , Prostatectomía , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Estudios Retrospectivos , Transducción de Señal/efectos de los fármacos , España , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...