Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986997

RESUMEN

The symbiotic N2-fixation process in the legume-rhizobia interaction is relevant for sustainable agriculture. The characterization of symbiotic mutants, mainly in model legumes, has been instrumental for the discovery of symbiotic genes, but similar studies in crop legumes are scant. To isolate and characterize common bean (Phaseolus vulgaris) symbiotic mutants, an ethyl methanesulphonate-induced mutant population from the BAT 93 genotype was analyzed. Our initial screening of Rhizobium etli CE3-inoculated mutant plants revealed different alterations in nodulation. We proceeded with the characterization of three non-nodulating (nnod), apparently monogenic/recessive mutants: nnod(1895), nnod(2353) and nnod(2114). Their reduced growth in a symbiotic condition was restored when the nitrate was added. A similar nnod phenotype was observed upon inoculation with other efficient rhizobia species. A microscopic analysis revealed a different impairment for each mutant in an early symbiotic step. nnod(1895) formed decreased root hair curling but had increased non-effective root hair deformation and no rhizobia infection. nnod(2353) produced normal root hair curling and rhizobia entrapment to form infection chambers, but the development of the latter was blocked. nnod(2114) formed infection threads that did not elongate and thus did not reach the root cortex level; it occasionally formed non-infected pseudo-nodules. The current research is aimed at mapping the responsible mutated gene for a better understanding of SNF in this critical food crop.

2.
Plant Sci ; 272: 1-13, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29807580

RESUMEN

This work shows that autophagy plays a key role in the hydrotropic curvature of Arabidopsis thaliana roots. An analysis of GFP-ATG8a transgenic plants showed that autophagosomes accumulated in the root curvature 2 h after the transfer of seedlings to Normal Medium-Water Stress Medium (NM-WSM). Autophagy flux was required for root bending. Remarkably, several atg mutants did not show hydrotropic curvature in NM-WSM or the splitting-agar system. Hyper, an H2O2 sensor showed that H2O2 preferentially accumulated in the root curvature at a similar rate as the autophagosomes did during hydrotropic response. Peroxidase and ROBH activity inhibition affected, negatively or positively root curvature. This data suggested H2O2 balance was required for root bending. Malondialdehyde, a metabolite used as an indicator of oxidative stress, accumulated at the same rate during the development of the curvature in NM-WSM. These results suggest that autophagy is required for the hydrotropic response in NM-WSM. We discuss the possible regulatory role of H2O2 on autophagy during the hydrotropic response that might relieve oxidative stress provoked by water stress. NM-WSM is water stress system suitable for studying hydrotropic responses on a short-term basis.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Autofagia/fisiología , Raíces de Plantas/crecimiento & desarrollo , Tropismo/fisiología , Deshidratación/fisiopatología , Microscopía Confocal , Plantones/crecimiento & desarrollo , Agua/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...