Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(9): eadk6501, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416833

RESUMEN

Single and multi-atoms supported on oxide substrates ultimately increase the efficiency of noble metal atom use, and moreover, catalytic activity and selectivity are also improved substantially. However, single and multi-atoms are unstable under catalytic conditions, and these metal atoms spontaneously aggregate and grow into nanoparticles. Catalytic performance is strongly related to local atomic configurations, and hence, it is essential to determine the three-dimensional (3D) atomic structures of multi-atoms on the substrate and their structural dynamics. Here, we show the real-time tracking of the 3D structural evolution of a Pt trimer on TiO2 (110) substrate at a high temperature, using high-spatiotemporal-resolution scanning transmission electron microscopy, where sub-angstrom spatial resolution is maintained, while the temporal resolution reaches 40 milliseconds. With the aid of prior structural knowledge of a Pt trimer for 3D reconstruction, the present method could open the way to characterize in situ atomic-scale structural dynamics, especially meta-stable structural transition.

2.
Microsc Microanal ; 29(Supplement_1): 1372-1373, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613821
5.
Nat Nanotechnol ; 17(1): 21-26, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34750559

RESUMEN

The size tunability and chemical versatility of nanostructures enable electron sources of high brightness and temporal coherence, both of which are important characteristics for high-resolution electron microscopy1-3. Despite intensive research efforts in the field, so far, only conventional field emitters based on a bulk tungsten (W) needle have been able to yield atomic-resolution images. The absence of viable alternatives is in part caused by insufficient fabrication precision for nanostructured sources, which require an alignment precision of subdegree angular deviation of a nanometre-sized emission area with the macroscopic emitter axis4. To overcome this challenge, in this work we micro-engineered a LaB6 nanowire-based electron source that emitted a highly collimated electron beam with good lateral and angular alignment. We integrated a passive collimator structure into the support needle tip for the LaB6 nanowire emitter. The collimator formed an axially symmetric electric field around the emission tip of the nanowire. Furthermore, by means of micromanipulation, the support needle tip was bent to align the emitted electron beam with the emitter axis. After installation in an aberration-corrected transmission electron microscope, we characterized the performance of the electron source in a vacuum of 10-8 Pa and achieved atomic resolution in both broad-beam and probe-forming modes at 60 kV beam energy. The natural, unmonochromated 0.20 eV electron energy loss spectroscopy resolution, 20% probe-forming efficiency and 0.4% probe current peak-to-peak noise ratio paired with modest vacuum requirements make the LaB6 nanowire-based electron source an attractive alternative to the standard W-based sources for low-cost electron beam instruments.

6.
Microscopy (Oxf) ; 69(4): 240-247, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32244250

RESUMEN

The temporal resolution in scanning transmission electron microscopy (STEM) is limited by the scanning system of an electron probe, leading to only a few frames per second (fps) at most in the current microscopes. To push the boundary of atomic-resolution STEM imaging into dynamic observations, an unprecedentedly faster scanning system combined with fast electron detection systems should be a prerequisite. Here we develop a new scanning probe system with the acquisition time of 83 nanoseconds per pixel and the fly-back time of 35 microseconds, leading to 25 fps STEM imaging with the image size of 512 × 512 pixels that is faster than a human perception speed. Using such high-speed probe scanning system, we have demonstrated the observations of shape-transformation of Pt nanoparticles and Pt single atomic motions on TiO2 (110) surface at atomic-resolution with the temporal resolution of 40 milliseconds. The present probe scanning system opens the door to use atomic-resolution STEM imaging for in situ observations of material dynamics under the temperatures of cooling or heating, the atmosphere of liquid or gas, electric-basing or mechanical test.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...