Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 102: 28-39, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31786096

RESUMEN

The central nervous system develops around a fluid filled space which persists in the adult within the ventricles, spinal canal and around the outside of the brain and spinal cord. Ventricular fluid is known to act as a growth medium and stimulator of proliferation and differentiation to neural stem cells but the role of CSF in the subarachnoid space has not been fully investigated except for its role in the recently described "glymphatic" system. Fundamental changes occur in the control and coordination of CNS development upon completion of brain stem and spinal cord development and initiation of cortical development. These include changes in gene expression, changes in fluid and fluid source from neural tube fluid to cerebrospinal fluid (CSF), changes in fluid volume, composition and fluid flow pathway, with exit of high volume CSF into the subarachnoid space and the critical need for fluid drainage. We used a number of experimental approaches to test a predicted critical role for CSF in development of the cerebral cortex in rodents and humans. Data from fetuses affected by spina bifida and/or hydrocephalus are correlated with experimental evidence on proliferation and migration of cortical cells from the germinal epithelium in rodent neural tube defects, as well as embryonic brain slice experiments demonstrating a requirement for CSF to contact both ventricular and pial surfaces of the developing cortex for normal proliferation and migration. We discuss the possibility that complications with the fluid system are likely to underlie developmental disorders affecting the cerebral cortex as well as function and integrity of the cortex throughout life.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Líquido Cefalorraquídeo/metabolismo , Espacio Subaracnoideo/metabolismo , Animales , Humanos
2.
J Cereb Blood Flow Metab ; 39(10): 2061-2073, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-29798726

RESUMEN

Hydrocephalus (HC) is an imbalance in cerebrospinal fluid (CSF) secretion/absorption resulting in fluid accumulation within the brain with consequential pathophysiology. Our research has identified a unique cerebral folate system in which depletion of CSF 10-formyl-tetrahydrofolate-dehydrogenase (FDH) is associated with cortical progenitor cell-cycle arrest in hydrocephalic Texas (H-Tx) rats. We used tissue culture, immunohistochemistry, in-situ PCR and RT-PCR and found that the in-vitro proliferation of arachnoid cells is highly folate-dependent with exacerbated proliferation occurring in hydrocephalic CSF that has low FDH but high folate-receptor-alpha (FRα) and folate. Adding FDH to this CSF prevented aberrant proliferation indicating a regulatory function of FDH on CSF folate concentration. Arachnoid cells have no detectable mRNA for FRα or FDH, but FDH mRNA is found in the choroid plexus (CP) and CSF microvesicles. Co-localization of FDH, FRα and folate suggests important functions of FDH in cerebral folate transport, buffering and function. In conclusion, abnormal CSF levels of FDH, FRα and folate inhibit cortical cell proliferation but allow uncontrolled arachnoid cell division that should increase fluid absorption by increasing the arachnoid although this fails in the hydrocephalic brain. FDH appears to buffer available folate to control arachnoid proliferation and function.


Asunto(s)
Ácido Fólico/metabolismo , Hidrocefalia/patología , Animales , Aracnoides/citología , Aracnoides/metabolismo , Aracnoides/patología , Proliferación Celular , Células Cultivadas , Femenino , Receptor 1 de Folato/líquido cefalorraquídeo , Receptor 1 de Folato/metabolismo , Ácido Fólico/líquido cefalorraquídeo , Hidrocefalia/líquido cefalorraquídeo , Hidrocefalia/metabolismo , Masculino , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/líquido cefalorraquídeo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Ratas , Ratas Sprague-Dawley
3.
J Neurochem ; 138(4): 610-23, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27294849

RESUMEN

Folate is vital in a range of biological processes and folate deficiency is associated with neurodevelopmental disorders such as neural tube defects and hydrocephalus (HC). 10-formyl-tetrahydrofolate-dehydrogenase (FDH) is a key regulator for folate availability and metabolic interconversion for the supply of 1-carbon groups. In previous studies, we found a deficiency of FDH in CSF associated with the developmental deficit in congenital and neonatal HC. In this study, we therefore aimed to investigate the role of FDH in folate transport and metabolism during the brain development of the congenital hydrocephalic Texas (H-Tx) rat and normal (Sprague-Dawley) rats. We show that at embryonic (E) stage E18 and E20, FDH-positive cells and/or vesicles derived from the cortex can bind methyl-folate similarly to folate receptor alpha, the main folate transporter. Hydrocephalic rats expressed diminished nuclear FDH in both liver and brain at all postnatal (P) ages tested (P5, P15, and P20) together with a parallel increase in hepatic nuclear methyl-folate at P5 and cerebral methylfolate at P15 and P20. A similar relationship was found between FDH and 5-methyl cytosine, the main marker for DNA methylation. The data indicated that FDH binds and transports methylfolate in the brain and that decreased liver and brain nuclear expression of FDH is linked with decreased DNA methylation which could be a key factor in the developmental deficits associated with congenital and neonatal HC. Folate deficiency is associated with neurodevelopmental disorders such as neural tube defects and hydrocephalus. 10-formyl-tetrahydrofolate-dehydrogenase (FDH) is a key regulator for folate availability and metabolic interconversion. We show that FDH binds and transports methylfolate in the brain. Moreover, we found that a deficiency of FDH in the nucleus of brain and liver is linked with decreased DNA methylation which could be a key factor in the developmental deficits associated with congenital and neonatal hydrocephalus cells.


Asunto(s)
Encéfalo/metabolismo , Hidrocefalia/metabolismo , Hígado/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Tetrahidrofolatos/metabolismo , Animales , Metilación de ADN/fisiología , Receptor 1 de Folato/metabolismo , Ácido Fólico/análogos & derivados , Ácido Fólico/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...