Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39185211

RESUMEN

Genome Wide Association studies (GWAS) have implicated PMS2 as a modifier of somatic expansion in Huntington's disease (HD), one of >45 known Repeat Expansion Diseases (REDs). PMS2 is a subunit of the MutLα complex, a major component of the mismatch repair (MMR) system, a repair pathway that is involved in the generation of expansions in many different REDs. However, while MLH3, a subunit of a second MutL complex, MutLγ, is required for all expansions, PMS2 has been shown to protect against expansion in some model systems but to drive expansion in others. To better understand PMS2's behavior, we have compared the effect of the loss of PMS2 in different tissues of an HD mouse model (CAG/CTG repeats) and a mouse model for the Fragile X-related disorders (FXDs), disorders that result from a CGG/CCG repeat expansion. Mice heterozygous for Pms2 show increased expansions in most expansion-prone tissues in both disease models. However, in Pms2 null mice expansions of both repeats increased in some tissues but decreased in others. Thus, the previously reported differences in the effects of PMS2 in different model systems do not reflect fundamentally different roles played by PMS2 in different REDs, but rather the paradoxical effects of PMS2 in different cellular contexts. These findings have important implications not only for the mechanism of expansion and the development of therapeutic approaches to reduce the pathology generated by repeat expansion, but also for our understanding of normal MMR.

2.
Cells ; 12(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37759487

RESUMEN

Over the past decade, adeno-associated viruses (AAVs) have attained significant prominence in gene therapy and genome editing applications, necessitating the development of robust and precise methodologies to ensure the quality and purity of AAV products. Existing AAV characterization techniques have proven effective for the analysis of pure and homogeneous AAV samples. However, there is still a demand for a rapid and low-sample-consumption method suitable for the characterization of lower purity or heterogeneous AAV samples commonly encountered in AAV products. Addressing this challenge, we propose the SEC-MP method, which combines size exclusion chromatography (SEC) with mass photometry (MP). In this novel approach, SEC effectively separates monomeric AAV particles from impurities, while the UV detector determines the virus particle concentration. MP complements this process by estimating the fraction of fully packaged AAVs in the total population of AAV particles. This combined methodology enables accurate determination of the titer of effective, fully packaged AAVs in samples containing aggregates, incorrectly packaged AAVs with incomplete genomes, protein or DNA fragments, and other impurities. Our experimental results demonstrate that SEC-MP provides valuable guidance for sample quality control and subsequent applications in the field of AAV research.

3.
Dis Model Mech ; 15(5)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35403689

RESUMEN

Repeat expansion diseases are a large group of human genetic disorders caused by expansion of a specific short tandem repeat tract. Expansion in somatic cells affects age of onset and disease severity in some of these disorders. However, alleles in DNA derived from blood, a commonly used source of DNA, usually show much less expansion than disease-relevant cells in the central nervous system in both humans and mouse models. Here we examined the extent of expansion in different DNA sources from mouse models of the fragile X-related disorders, Huntington's disease, spinocerebellar ataxia type 1 and spinocerebellar ataxia type 2. We found that DNA isolated from stool is a much better indicator of somatic expansion than DNA from blood. As stool is a sensitive and noninvasive source of DNA, it can be useful for studies of factors affecting the risk of expansion, or the monitoring of treatments aimed at reducing expansion in preclinical trials, as it would allow expansions to be examined longitudinally in the same animal and allow significant changes in expansion to be observed much earlier than is possible with other DNA sources.


Asunto(s)
Enfermedad de Huntington , Ataxias Espinocerebelosas , Animales , Sistema Nervioso Central , ADN , Modelos Animales de Enfermedad , Enfermedad de Huntington/genética , Ratones , Expansión de Repetición de Trinucleótido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA