Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Rheum Dis ; 82(4): 507-514, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600182

RESUMEN

OBJECTIVES: To investigate the cutaneous microbiome spanning the entire psoriatic disease spectrum, and to evaluate distinguishing features of psoriasis (PsO) and psoriatic arthritis (PsA). METHODS: Skin swabs were collected from upper and lower extremities of healthy individuals and patients with PsO and PsA. Psoriatic patients contributed both lesional (L) and contralateral non-lesional (NL) samples. Microbiota were analysed using 16S rRNA sequencing. RESULTS: Compared with healthy skin, alpha diversity in psoriatic NL and L skin was significantly reduced (p<0.05) and samples clustered separately in plots of beta diversity (p<0.05). Kocuria and Cutibacterium were enriched in healthy subjects, while Staphylococcus was enriched in psoriatic disease. Microbe-microbe association networks revealed a higher degree of similarity between psoriatic NL and L skin compared with healthy skin despite the absence of clinically evident inflammation. Moreover, the relative abundance of Corynebacterium was higher in NL PsA samples compared with NL PsO samples (p<0.05), potentially serving as a biomarker for disease progression. CONCLUSIONS: These findings show differences in diversity, bacterial composition and microbe-microbe interactions between healthy and psoriatic skin, both L and NL. We further identified bacterial biomarkers that differentiate disease phenotypes, which could potentially aid in predicting the transition from PsO to PsA.


Asunto(s)
Artritis Psoriásica , Microbiota , Psoriasis , Humanos , Artritis Psoriásica/microbiología , ARN Ribosómico 16S/genética , Piel , Bacterias , Biomarcadores
2.
Rheumatology (Oxford) ; 62(1): 467-472, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35640110

RESUMEN

OBJECTIVES: Autoantibody seroconversion has been extensively studied in the context of COVID-19 infection but data regarding post-vaccination autoantibody production is lacking. Here we aimed to determine the incidence of common autoantibody formation following mRNA COVID-19 vaccines in patients with inflammatory arthritis (IA) and in healthy controls. METHODS: Autoantibody seroconversion was measured by serum ELISA in a longitudinal cohort of IA participants and healthy controls before and after COVID-19 mRNA-based immunization. RESULTS: Overall, there was a significantly lower incidence of ANA seroconversion in participants who did not contract COVID-19 prior to vaccination compared with those who been previously infected (7.4% vs 24.1%, P = 0.014). Incidence of de novo anti-CCP seroconversion in all participants was low at 4.9%. Autoantibody levels were typically of low titre, transient, and not associated with increase in IA flares. CONCLUSIONS: In both health and inflammatory arthritis, the risk of autoantibody seroconversion is lower following mRNA-based immunization than following natural SARS-CoV-2 infection. Importantly, seroconversion does not correlate with self-reported IA disease flare risk, further supporting the encouragement of mRNA-based COVID-19 immunization in the IA population.


Asunto(s)
Artritis , COVID-19 , Humanos , Autoanticuerpos , Vacunas contra la COVID-19 , Incidencia , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , ARN Mensajero
3.
J Crohns Colitis ; 16(2): 259-274, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-34374750

RESUMEN

Intestinal myeloid cells play a critical role in balancing intestinal homeostasis and inflammation. Here, we report that expression of the autophagy-related 5 [Atg5] protein in myeloid cells prevents dysbiosis and excessive intestinal inflammation by limiting IL-12 production. Mice with a selective genetic deletion of Atg5 in myeloid cells [Atg5ΔMye] showed signs of dysbiosis preceding colitis, and exhibited severe intestinal inflammation upon colitis induction that was characterised by increased IFNγ production. The exacerbated colitis was linked to excess IL-12 secretion from Atg5-deficient myeloid cells and gut dysbiosis. Restoration of the intestinal microbiota or genetic deletion of IL-12 in Atg5ΔMye mice attenuated the intestinal inflammation in Atg5ΔMye mice. Additionally, Atg5 functions to limit IL-12 secretion through modulation of late endosome [LE] acidity. Last, the autophagy cargo receptor NBR1, which accumulates in Atg5-deficient cells, played a role by delivering IL-12 to LE. In summary, Atg5 expression in intestinal myeloid cells acts as an anti-inflammatory brake to regulate IL-12, thus preventing dysbiosis and uncontrolled IFNγ-driven intestinal inflammation.


Asunto(s)
Colitis , Disbiosis , Animales , Autofagia/genética , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Colitis/inducido químicamente , Colitis/prevención & control , Inflamación/metabolismo , Interleucina-12 , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...