Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37895851

RESUMEN

Leishmaniasis and Chagas disease are still considered neglected illnesses due to the lack of investment in research, despite the fact that almost one million new cases are reported every year. Four 7-oxo-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidine (HftpO) first-row transition complexes (Cu, Co, Ni, Zn) have been studied for the first time in vitro against five different species of Leishmania spp. (L. infantum, L. braziliensis, L. donovani, L. peruviana and L. mexicana) as well as Trypanosoma cruzi, showing higher efficacy than the reference commercial drugs. UV and luminescence properties were also evaluated. As a proof of concept, anchoring of a model high-effective-metal complex as an antiparasitic agent on silica nanoparticles was carried out for the first time, and drug-release behaviour was evaluated, assessing this new approach for drug vehiculation.

2.
J Mater Chem B ; 10(36): 6983-6990, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36004753

RESUMEN

The construction of a novel enzyme-controlled nanomachine with multiple release mechanisms for on-command delivery is described. This nanodevice was assembled by modifying mesoporous silica nanoparticles with 2-(benzo[d]thiazol-2-yl)phenyl 4-aminobenzoate moieties, and further capped with ß-cyclodextrin-modified glucose oxidase neoglycoenzyme. The device released the encapsulated payload in the presence of H2O2 and acidic media. The use of glucose as an input chemical signal also triggered cargo release through the enzymatic production of gluconic acid and hydrogen peroxide, and the subsequent disruption of the gating mechanism at the mesoporous surface. The nanodevice was successfully employed for the enzyme-controlled release of doxorubicin in HeLa cancer cells.


Asunto(s)
Glucosa Oxidasa , beta-Ciclodextrinas , Preparaciones de Acción Retardada , Doxorrubicina/farmacología , Glucosa , Humanos , Peróxido de Hidrógeno , Porosidad , Dióxido de Silicio , para-Aminobenzoatos
3.
Nanomaterials (Basel) ; 11(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34684932

RESUMEN

Inspired by biological systems, the development of artificial nanoscale materials that communicate over a short distance is still at its early stages. This work shows a new example of a cooperating system with intercommunicated devices at the nanoscale. The system is based on the new sucrose-responsive Janus gold-mesoporous silica (Janus Au-MS) nanoparticles network with two enzyme-powered nanodevices. These nanodevices involve two enzymatic processes based on invertase and glucose oxidase, which are anchored on the Au surfaces of different Janus Au-MS nanoparticles, and N-acetyl-L-cysteine and [Ru(bpy)3]2+ loaded as chemical messengers, respectively. Sucrose acts as the INPUT, triggering the sequential delivery of two different cargoes through the enzymatic control. Nanoscale communication using abiotic nanodevices is a developing potential research field and may prompt several applications in different disciplines, such as nanomedicine.

4.
J Mater Chem B ; 7(30): 4669-4676, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31364688

RESUMEN

We report herein the assembly of an integrated nanodevice with bi-enzymatic cascade control for on-command cargo release. This nanocarrier is based on Au-mesoporous silica Janus nanoparticles capped at the mesoporous face with benzimidazole/ß-cyclodextrin-glucose oxidase pH-sensitive gate-like ensembles and functionalized with invertase on the gold face. The rationale for this delivery mechanism is based on the invertase-mediated hydrolysis of sucrose yielding glucose, which is further transformed into gluconic acid by glucose oxidase causing the disruption of the pH-sensitive supramolecular gates at the Janus nanoparticles. This enzyme-powered device was successfully employed in the autonomous and on-demand delivery of doxorubicin in HeLa cancer cells.


Asunto(s)
Portadores de Fármacos/uso terapéutico , Nanopartículas Multifuncionales/uso terapéutico , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Gluconatos/metabolismo , Glucosa Oxidasa/metabolismo , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , beta-Fructofuranosidasa/metabolismo
5.
ACS Appl Bio Mater ; 2(8): 3321-3328, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35030774

RESUMEN

Here we describe the construction of an integrated and pH-sensitive nanomachine with layer-by-layer supramolecular design and enzymatic control for on-command delivery. The nanodevice comprises a first layer of ß-cyclodextrin-coated gold nanoparticles as capping element of benzimidazole functionalized mesoporous silica nanoparticles, and a second control layer based on an adatamantane-modified glucose oxidase derivative. The nanomachine was selectively fuelled by glucose and successfully employed for the autonomous release of doxorubicin in HeLa cancer cells.

6.
ACS Appl Mater Interfaces ; 10(31): 26494-26500, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30016064

RESUMEN

Here, we present the design of smart nanodevices capable of reading molecular information from the environment and acting accordingly by processing Boolean logic tasks. As proof of concept, we prepared Au-mesoporous silica (MS) nanoparticles functionalized with the enzyme glucose dehydrogenase (GDH) on the Au surface and with supramolecular nanovalves as caps on the MS surface, which is loaded with a cargo (dye or drug). The nanodevice acts as an AND logic gate and reads information from the solution (presence of glucose and nicotinamide adenine dinucleotide (NAD+)), which results in cargo release. We show the possibility of coimmobilizing GDH and the enzyme urease on nanoparticles to mimic an INHIBIT logic gate, in which the AND gate is switched off by the presence of urea. We also show that such nanodevices can deliver cytotoxic drugs in cancer cells by recognizing intracellular NAD+ and the presence of glucose.

7.
Analyst ; 141(13): 4162-9, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27186597

RESUMEN

A novel water-soluble graphene derivative was prepared from graphene oxide via a two-step modification approach. Graphene oxide was first functionalised with reactive epoxy groups by covalent modification with (3-glycidyloxypropyl)trimethoxysilane and further cross-linked with glycol chitosan. This graphene derivative was characterized using different microscopy and physicochemical methods and employed as a coating material for a glassy carbon electrode. The nanostructured surface was used as a support for the covalent immobilization of the enzyme laccase through cross-linking with glutaraldehyde. The enzyme electrode was tested for the amperometric detection of different phenolic compounds, which displayed excellent analytical behaviour toward catechol with a linear range of response from 200 nM to 15 µM, sensitivity of 93 mA M(-1) cm(-2), and low detection limit of 76 nM. The enzyme biosensor showed high stability when stored at 4 °C under dry conditions and was successfully employed to quantify the total phenolic compounds in commercial herbal tea samples.


Asunto(s)
Técnicas Biosensibles , Quitosano , Enzimas Inmovilizadas/química , Glicoles , Grafito , Nanopartículas/química , Fenoles/análisis , Electrodos , Óxidos
8.
J Mater Chem B ; 3(17): 3518-3524, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32262235

RESUMEN

A novel strategy was employed to prepare a water-soluble graphene derivative by using dextran-based polymer brushes as solubilizing agents. Graphene oxide was grafted with (3-mercaptopropyl) trimethoxysilane and further decorated with Au nanoparticles. This hybrid nanomaterial was then reduced and anchored with polysaccharide-based polymer brushes by chemisorption of an end-group thiolated dextran derivative on the Au nanoparticles. The resulting hybrid nonmaterial allowed highly stable aqueous dispersions to be obtained, which were used to coat glassy carbon electrodes for the preparation of a model tyrosinase electrochemical biosensor for catechol. The enzyme electrode showed excellent electroanalytical performance with fast response in about 5 s, a linear range of 100 pM-120 nM, a very high sensitivity of 45.9 A M-1 and a very low detection limit of 40 pM for catechol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...