Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Nutr Food Res ; 68(9): e2400147, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643378

RESUMEN

SCOPE: Bile acids play a crucial role in lipid absorption and the regulation of lipid, glucose, and energy homeostasis. Coenzyme Q10 (CoQ10), a lipophilic antioxidant, has been recognized for its positive effects on obesity and related glycolipid metabolic disorders. However, the relationship between CoQ10 and bile acids has not yet been evaluated. METHODS AND RESULTS: This study assesses the impact of CoQ10 treatment on bile acid metabolism in mice on a high-fat diet using Ultra-Performance Liquid Chromatography-tandem Mass Spectrometry. CoQ10 reverses the reduction in serum and colonic total bile acid levels and alters the bile acid profile in mice that are caused by a high-fat diet. Seventeen potential targets of CoQ10 in bile acid metabolism are identified by network pharmacology, with six being central to the mechanism. Molecular docking shows a high binding affinity of CoQ10 to five of these key targets. Further analyses indicate that farnesoid X (FXR) receptor and Takeda G-protein coupled receptor 5 (TGR5) may be crucial targets for CoQ10 to regulate bile acid metabolism and exert beneficial effects. CONCLUSION: This study sheds light on the impact of CoQ10 in bile acids metabolism and offers a new perspective on the application of CoQ10 in metabolic health.


Asunto(s)
Ácidos y Sales Biliares , Dieta Alta en Grasa , Suplementos Dietéticos , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Farmacología en Red , Receptores Citoplasmáticos y Nucleares , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ácidos y Sales Biliares/metabolismo , Animales , Receptores Citoplasmáticos y Nucleares/metabolismo , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Ratones
2.
Environ Pollut ; 335: 122238, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37506808

RESUMEN

Ceftriaxone is an emerging contaminant due to its potential harm, while its effects on liver are still need to be clarified. In this study, we first pretreated the 8-week-old C57BL/6J mice with high dose ceftriaxone sodium (Cef, 400 mg/mL, 0.2 mL per dose) for 8 days to prepare a gut dysbiosis model, then treated with normal feed for a two-month recovery period, and applied non-targeted metabolomics (including lipidomics) to investigate the variations of fecal and liver metabolome, and coupled with targeted determination of fecal short-chain fatty acids (SCFAs) and bile acids (BAs). Lastly, the correlations and mediation analysis between the liver metabolism and gut metabolism/microbes were carried, and the potential mechanisms of the mal-effects on gut-liver axis induced by Cef pretreatment were accordingly discussed. Compared to the control group, Cef pretreatment reduced the rate of weight gain and hepatosomatic index, induced bile duct epithelial cells proliferated around the central vein and appearance of binucleated hepatocytes, decreased the ratio of total branching chains amino acids (BCAAs) to total aromatic amino acids (AAAs) in liver metabolome. In fecal metabolome, the total fecal SCFAs and BAs did not change significantly while butyric acid decreased and the primary BAs increased after Cef pretreatment. Correlation and mediation analysis revealed one potential mechanism that Cef may first change the intestinal microbiota (such as destroying its normal structure, reducing its abundance and the stability of the microbial network or certain microbe abundance like Alistipes), and then change the intestinal metabolism (such as acetate, caproate, propionate), leading to liver metabolic disorder (such as spermidine, inosine, cinnamaldehyde). This study proved the possibility of Cef-induced liver damage, displayed the overall metabolic profile of the liver following Cef pretreatment and provided a theoretical framework for further research into the mechanism of Cef-induced liver damage.


Asunto(s)
Ceftriaxona , Hígado , Ratones , Animales , Ceftriaxona/toxicidad , Ratones Endogámicos C57BL , Ácidos Grasos Volátiles , Metaboloma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...