Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Ther Med ; 27(6): 239, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38633355

RESUMEN

The present study aimed to investigate the effect and mechanism of Pulsatilla compounds on lung adenocarcinoma. The representative drug chosen was the compound 23-HBA. GeneCards, Swiss target prediction, DisGeNET and TCMSP were used to screen out related genes, and MTT and flow cytometry assays were used to verify the inhibitory effect of Pulsatilla compounds on the proliferation of lung adenocarcinoma cells. Subsequently, the optimal target, peroxisome proliferator-activated receptor (PPAR)-γ, was selected using bioinformatics analysis, and its properties of low expression in lung adenocarcinoma cells and its role as a tumor suppressor gene were verified by western blot assay. The pathways related to immunity and inflammation, vascular function, cell proliferation, differentiation, development and apoptosis with the highest degree of enrichment and the mechanisms were explored through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Finally, the clinical prognosis in terms of the survival rate of patients in whom the drug is acting on the target was analyzed using the GEPIA database. The results indicated that Pulsatilla compounds can inhibit the proliferation of lung adenocarcinoma cells by blocking the cell cycle at the G1 phase. Subsequently, the related PPAR-γ gene was verified as a tumor suppressor gene. Further analysis demonstrated that this finding was related to the PPAR signaling pathway and mitochondrial reactive oxygen species (ROS) production. Finally, the clinical prognosis was found to be improved, as the survival rate of patients was increased. In conclusion, Pulsatilla compounds were indicated to inhibit the viability and proliferation of lung adenocarcinoma H1299 cells, and the mechanism of action was related to PPAR-γ, the PPAR signaling pathway and mitochondrial ROS. The present study provides novel insight to further explore the treatment of lung adenocarcinoma.

2.
Arch Oral Biol ; 135: 105345, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35026647

RESUMEN

OBJECTIVE: The current study aimed to explore the effect of Follistatin-like 1 (FSTL1) on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in an inflammatory environment. DESIGN: Animal models of FSTL1-deficiency and wild-type mice were used, and the micro-CT images of the femoral head were evaluated. Mouse bone marrow mesenchymal stem cells were treated with various concentrations of recombinant FSTL1 (rFSTL1) in an inflammatory environment in vitro. Meanwhile, overexpression or knockdown of FSTL1 through lentiviral transfection was performed. Alkaline phosphatase (ALP) activity was tested, and Alizarin Red staining (ARS) was performed to evaluate osteogenic differentiation ability. The mRNA expression level of osteogenesis-related genes was detected by RT-qPCR. RESULTS: In vivo experiments revealed a higher number of femoral skulls, higher trabecular thickness, smaller trabecular space, and less osteoporosis in FSTL1-knockdown mice than in the wild-type mice. The BMSCs with overexpression of FSTL1 or those treated with recombinant FSTL1 (rFSTL1) showed suppression of ALP activity, calcium nodule formation, and expression of osteogenesis-related genes osteopontin (OPN), osteocalcin (OCN), collagen type I alpha 1 (Col1α1), and more importantly, rFSTL1 functions in a dose-dependent manner. In contrast, FSTL1 knockdown promoted the osteogenesis activity and the expression of these osteogenesis-related genes in vitro. CONCLUSIONS: FSTL1 is an osteogenic suppressor that inhibits the osteogenic differentiation of BMSCs during inflammation and it can be a new target for bone regeneration.


Asunto(s)
Diferenciación Celular , Proteínas Relacionadas con la Folistatina/metabolismo , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Osteogénesis , Animales , Células de la Médula Ósea , Células Cultivadas , Inflamación , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...