Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Immunol ; 8(87): eabq2424, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37738362

RESUMEN

Metabolic fitness of T cells is essential for their vitality, which is largely dependent on the behavior of the mitochondria. The nature of mitochondrial behavior in tumor-infiltrating T cells remains poorly understood. In this study, we show that mitofusin-2 (MFN2) expression is positively correlated with the prognosis of multiple cancers. Genetic ablation of Mfn2 in CD8+ T cells dampens mitochondrial metabolism and function and promotes tumor progression. In tumor-infiltrating CD8+ T cells, MFN2 enhances mitochondria-endoplasmic reticulum (ER) contact by interacting with ER-embedded Ca2+-ATPase SERCA2, facilitating the mitochondrial Ca2+ influx required for efficient mitochondrial metabolism. MFN2 stimulates the ER Ca2+ retrieval activity of SERCA2, thereby preventing excessive mitochondrial Ca2+ accumulation and apoptosis. Elevating mitochondria-ER contact by increasing MFN2 in CD8+ T cells improves the efficacy of cancer immunotherapy. Thus, we reveal a tethering-and-buffering mechanism of organelle cross-talk that regulates the metabolic fitness of tumor-infiltrating CD8+ T cells and highlights the therapeutic potential of enhancing MFN2 expression to optimize T cell function.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Apoptosis , Retículo Endoplásmico , GTP Fosfohidrolasas , Mitocondrias , Proteínas Mitocondriales
2.
JCI Insight ; 8(4)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36649072

RESUMEN

BACKGROUNDImmune checkpoint blockade is an emerging treatment for T cell non-Hodgkin's lymphoma (T-NHL), but some patients with T-NHL have experienced hyperprogression with undetermined mechanisms upon anti-PD-1 therapy.METHODSSingle-cell RNA-Seq, whole-genome sequencing, whole-exome sequencing, and functional assays were performed on primary malignant T cells from a patient with advanced cutaneous T cell lymphoma who experienced hyperprogression upon anti-PD-1 treatment.RESULTSThe patient was enrolled in a clinical trial of anti-PD-1 therapy and experienced disease hyperprogression. Single-cell RNA-Seq revealed that PD-1 blockade elicited a remarkable activation and proliferation of the CD4+ malignant T cells, which showed functional PD-1 expression and an exhausted status. Further analyses identified somatic amplification of PRKCQ in the malignant T cells. PRKCQ encodes PKCθ; PKCθ is a key player in the T cell activation/NF-κB pathway. PRKCQ amplification led to high expressions of PKCθ and p-PKCθ (T538) on the malignant T cells, resulting in an oncogenic activation of the T cell receptor (TCR) signaling pathway. PD-1 blockade in this patient released this signaling, derepressed the proliferation of malignant T cells, and resulted in disease hyperprogression.CONCLUSIONOur study provides real-world clinical evidence that PD-1 acts as a tumor suppressor for malignant T cells with oncogenic TCR activation.TRIAL REGISTRATIONClinicalTrials.gov (NCT03809767).FUNDINGThe National Natural Science Foundation of China (81922058), the National Science Fund for Distinguished Young Scholars (T2125002), the National Science and Technology Major Project (2019YFC1315702), the National Youth Top-Notch Talent Support Program (283812), and the Peking University Clinical Medicine plus X Youth Project (PKU2019LCXQ012) supported this work.


Asunto(s)
Linfoma Cutáneo de Células T , Neoplasias Cutáneas , Adolescente , Humanos , Proteína Quinasa C-theta , Receptores de Antígenos de Linfocitos T , Transducción de Señal
3.
Chin J Cancer Res ; 34(1): 53-62, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35355931

RESUMEN

Objective: Previous studies reported that 4-1BB-based CD19 chimeric antigen receptor (CAR)-T cells were more beneficial for the clinical outcomes than CD28-based CAR-T cells, especially the lower incidence rate of severe adverse events. However, the median progression-free survival (mPFS) of 4-1BB-based product Kymriah was shorter than that of CD28-based Yescarta (2.9 monthsvs. 5.9 months), suggesting that Kymriah was limited in the long-term efficacy. Thus, a safe and durable 4-1BB-based CD19 CAR-T needs to be developed. Methods: We designed a CD19-targeted CAR-T (named as IM19) which consisted of an FMC63 scFv, 4-1BB and CD3ζ intracellular domain and was manufactured into a memory T-enriched formulation. A phase I/II clinical trial was launched to evaluate the clinical outcomes of IM19 in relapsed or refractory (r/r) B cell non-Hodgkin lymphoma (B-NHL). Dose-escalation investigation (at a dose of 5×105/kg, 1×106/kg and 3×106/kg) was performed in 22 r/r B-NHL patients. All patients received a single infusion of IM19 after 3-day conditional regimen. Results: At month 3, the overall response rate (ORR) was 59.1%, the complete response rate (CRR) was 50.0%. The mPFS was 6 months and the 1-year overall survival rate was 77.8%. Cytokine release syndrome (CRS) occurred in 13 patients (59.1%), with 54.5% of grade 1-2 CRS. Only one patient (4.5%) experienced grade 3 CRS and grade 3 neurotoxicity. Conclusions: These results demonstrated the safety and durable efficacy of a 4-1BB-based CD19 CAR-T, IM19, which is promising for further development and clinical investigation.

4.
Nat Commun ; 13(1): 1158, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241665

RESUMEN

Cutaneous T cell lymphoma (CTCL) represents a heterogeneous group of non-Hodgkin lymphoma distinguished by the presence of clonal malignant T cells. The heterogeneity of malignant T cells and the complex tumor microenvironment remain poorly characterized. With single-cell RNA analysis and bulk whole-exome sequencing on 19 skin lesions from 15 CTCL patients, we decipher the intra-tumor and inter-lesion diversity of CTCL patients and propose a multi-step tumor evolution model. We further establish a subtyping scheme based on the molecular features of malignant T cells and their pro-tumorigenic microenvironments: the TCyEM group, demonstrating a cytotoxic effector memory T cell phenotype, shows more M2 macrophages infiltration, while the TCM group, featured by a central memory T cell phenotype and adverse patient outcome, is infiltrated by highly exhausted CD8+ reactive T cells, B cells and Tregs with suppressive activities. Our results establish a solid basis for understanding the nature of CTCL and pave the way for future precision medicine for CTCL patients.


Asunto(s)
Linfoma Cutáneo de Células T , Neoplasias Cutáneas , Humanos , Linfoma Cutáneo de Células T/genética , Linfoma Cutáneo de Células T/patología , Análisis de la Célula Individual , Neoplasias Cutáneas/patología , Transcriptoma , Microambiente Tumoral/genética
5.
Adv Sci (Weinh) ; 9(12): e2103675, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35112806

RESUMEN

Acute kidney injury (AKI) is a complex clinical disorder associated with poor outcomes. Targeted regulation of the degree of inflammation has been a potential strategy for AKI management. Macrophages are the main effector cells of kidney inflammation. However, macrophage heterogeneity in ischemia reperfusion injury induced AKI (IRI-AKI) remains unclear. Using single-cell RNA sequencing of the mononuclear phagocytic system in the murine IRI model, the authors demonstrate the complementary roles of kidney resident macrophages (KRMs) and monocyte-derived infiltrated macrophages (IMs) in modulating tissue inflammation and promoting tissue repair. A unique population of S100a9hi Ly6chi IMs is identified as an early responder to AKI, mediating the initiation and amplification of kidney inflammation. Kidney infiltration of S100A8/A9+ macrophages and the relevance of renal S100A8/A9 to tissue injury is confirmed in human AKI. Targeting the S100a8/a9 signaling with small-molecule inhibitors exhibits renal protective effects represented by improved renal function and reduced mortality in bilateral IRI model, and decreased inflammatory response, ameliorated kidney injury, and improved long-term outcome with decreased renal fibrosis in the unilateral IRI model. The findings support S100A8/A9 blockade as a feasible and clinically relevant therapy potentially waiting for translation in human AKI.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Lesión Renal Aguda/tratamiento farmacológico , Animales , Calgranulina A/uso terapéutico , Femenino , Humanos , Inflamación/tratamiento farmacológico , Macrófagos/fisiología , Masculino , Ratones , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Análisis de Secuencia de ARN
6.
Nat Commun ; 12(1): 4977, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404786

RESUMEN

The presence or absence of anti-citrullinated peptide antibodies (ACPA) and associated disparities in patients with rheumatoid arthritis (RA) implies disease heterogeneity with unknown diverse immunopathological mechanisms. Here we profile CD45+ hematopoietic cells from peripheral blood or synovial tissues from both ACPA+ and ACPA- RA patients by single-cell RNA sequencing and identify subsets of immune cells that contribute to the pathogenesis of RA subtypes. We find several synovial immune cell abnormalities, including up-regulation of CCL13, CCL18 and MMP3 in myeloid cell subsets of ACPA- RA compared with ACPA+ RA. Also evident is a lack of HLA-DRB5 expression and lower expression of cytotoxic and exhaustion related genes in the synovial tissues of patients with ACPA- RA. Furthermore, the HLA-DR15 haplotype (DRB1/DRB5) conveys an increased risk of developing active disease in ACPA+ RA in a large cohort of patients with treatment-naive RA. Immunohistochemical staining shows increased infiltration of CCL13 and CCL18-expressing immune cells in synovial tissues of ACPA- RA. Collectively, our data provide evidence of the differential involvement of cellular and molecular pathways involved in the pathogenesis of seropositive and seronegative RA subtypes and reveal the importance of precision therapy based on ACPA status.


Asunto(s)
Anticuerpos Antiproteína Citrulinada/genética , Anticuerpos Antiproteína Citrulinada/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Membrana Sinovial/metabolismo , Anticuerpos Antiproteína Citrulinada/inmunología , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Autoanticuerpos/inmunología , Línea Celular , Quimiocinas CC , Estudios de Cohortes , Predisposición Genética a la Enfermedad , Subtipos Serológicos HLA-DR , Humanos , Células Asesinas Naturales , Antígenos Comunes de Leucocito , Metaloproteinasa 3 de la Matriz , Proteínas Quimioatrayentes de Monocitos , Células Mieloides , Linfocitos T , Regulación hacia Arriba
7.
Science ; 370(6512): 82-89, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33004515

RESUMEN

Knowledge of somatic mutation accumulation in normal cells, which is essential for understanding cancer development and evolution, remains largely lacking. In this study, we investigated somatic clonal events in morphologically normal human urothelium (MNU; epithelium lining the bladder and ureter) and identified macroscopic clonal expansions. Aristolochic acid (AA), a natural herb-derived compound, was a major mutagenic driving factor in MNU. AA drastically accelerates mutation accumulation and enhances clonal expansion. Mutations in MNU were widely observed in chromatin remodeling genes such as KMT2D and KDM6A but rarely in TP53, PIK3CA, and FGFR3 KMT2D mutations were found to be common in urothelial cells, regardless of whether the cells experience exogenous mutagen exposure. Copy number alterations were rare and largely confined to small-scale regions, along with copy-neutral loss of heterozygosity. Single AA-associated clones in MNU expanded to a scale of several square centimeters in size.


Asunto(s)
Ácidos Aristolóquicos/toxicidad , Ensamble y Desensamble de Cromatina/genética , Mutágenos/toxicidad , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/genética , Urotelio/efectos de los fármacos , Urotelio/patología , Fosfatidilinositol 3-Quinasa Clase I/genética , Proteínas de Unión al ADN/genética , Histona Demetilasas/genética , Humanos , Mutagénesis , Mutación , Proteínas de Neoplasias/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Proteína p53 Supresora de Tumor/genética
8.
Cell Res ; 30(11): 950-965, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32901110

RESUMEN

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated malignancy with a complex tumor ecosystem. How the interplay between tumor cells, EBV, and the microenvironment contributes to NPC progression and immune evasion remains unclear. Here we performed single-cell RNA sequencing on ~104,000 cells from 19 EBV+ NPCs and 7 nonmalignant nasopharyngeal biopsies, simultaneously profiling the transcriptomes of malignant cells, EBV, stromal and immune cells. Overall, we identified global upregulation of interferon responses in the multicellular ecosystem of NPC. Notably, an epithelial-immune dual feature of malignant cells was discovered and associated with poor prognosis. Functional experiments revealed that tumor cells with this dual feature exhibited a higher capacity for tumorigenesis. Further characterization of the cellular components of the tumor microenvironment (TME) and their interactions with tumor cells revealed that the dual feature of tumor cells was positively correlated with the expression of co-inhibitory receptors on CD8+ tumor-infiltrating T cells. In addition, tumor cells with the dual feature were found to repress IFN-γ production by T cells, demonstrating their capacity for immune suppression. Our results provide new insights into the multicellular ecosystem of NPC and offer important clinical implications.


Asunto(s)
Perfilación de la Expresión Génica , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Análisis de la Célula Individual , Microambiente Tumoral/genética , Virosis/genética , Animales , Agregación Celular , Comunicación Celular , Femenino , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunomodulación , Interferones/metabolismo , Ligandos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones Endogámicos BALB C , Ratones Desnudos , Células Mieloides/metabolismo , Neoplasias Nasofaríngeas/inmunología , Neoplasias Nasofaríngeas/virología , Procesos Estocásticos , Células del Estroma/metabolismo , Linfocitos T/inmunología
9.
Nat Commun ; 8(1): 524, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900112

RESUMEN

Esophageal squamous dysplasia is believed to be the precursor lesion of esophageal squamous cell carcinoma (ESCC); however, the genetic evolution from dysplasia to ESCC remains poorly understood. Here, we applied multi-region whole-exome sequencing to samples from two cohorts, 45 ESCC patients with matched dysplasia and carcinoma samples, and 13 tumor-free patients with only dysplasia samples. Our analysis reveals that dysplasia is heavily mutated and harbors most of the driver events reported in ESCC. Moreover, dysplasia is polyclonal, and remarkable heterogeneity is often observed between tumors and their neighboring dysplasia samples. Notably, copy number alterations are prevalent in dysplasia and persist during the ESCC progression, which is distinct from the development of esophageal adenocarcinoma. The sharp contrast in the prevalence of the 'two-hit' event on TP53 between the two cohorts suggests that the complete inactivation of TP53 is essential in promoting the development of ESCC.The pathogenesis of oesophageal squamous cell carcinoma is a multi-step process but the genetic determinants behind this progression are unknown. Here the authors use multi-region exome sequencing to comprehensively investigate the genetic evolution of precursor dysplastic lesions and untransformed oesophagus.


Asunto(s)
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Exoma , Mutación , Lesiones Precancerosas/genética , Variaciones en el Número de Copia de ADN , Carcinoma de Células Escamosas de Esófago , Humanos , Pérdida de Heterocigocidad , Lesiones Precancerosas/patología , Análisis de Secuencia de ADN/métodos , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...