Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angiogenesis ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955953

RESUMEN

The proliferation of the endothelium is a highly coordinated process to ensure the emergence, expansion, and homeostasis of the vasculature. While Bone Morphogenetic Protein (BMP) signaling fine-tunes the behaviors of endothelium in health and disease, how BMP signaling influences the proliferation of endothelium and therefore, modulates angiogenesis remains largely unknown. Here, we evaluated the role of Activin A Type I Receptor (ACVR1/ALK2), a key BMP receptor in the endothelium, in modulating the proliferation of endothelial cells. We show that ACVR1/ALK2 is a key modulator for the proliferation of endothelium in the retinal vessels. Loss of endothelial ALK2 leads to a significant reduction in endothelial proliferation and results in fewer branches/endothelial cells in the retinal vessels. Interestingly, venous endothelium appears to be more susceptible to ALK2 deletion. Mechanistically, ACVR1/ALK2 inhibits the expression of CDKN1A/p21, a critical negative regulator of cell cycle progression, in a SMAD1/5-dependent manner, thereby enabling the venous endothelium to undergo active proliferation by suppressing CDKN1A/p21. Taken together, our findings show that BMP signaling mediated by ACVR1/ALK2 provides a critical yet previously underappreciated input to modulate the proliferation of venous endothelium, thereby fine-tuning the context of angiogenesis in health and disease.

2.
Andrology ; 12(2): 447-458, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37290397

RESUMEN

BACKGROUND: The odds of erectile dysfunction are three times more prevalent in diabetes. Severe peripheral vascular and neural damage in diabetic patients responds poorly to phosphodiesterase-5 (PDE5) inhibitors. However, bone morphogenetic protein 2 is known to be involved in angiogenesis. OBJECTIVES: To assess the efficacy of bone morphogenetic protein 2 in stimulating angiogenesis and augmenting nerve regeneration in a mouse model of diabetic-induced erectile dysfunction. MATERIALS AND METHODS: The induction of diabetes mellitus was performed by streptozotocin (50 mg/kg daily) administered intraperitoneally for 5 successive days to male C57BL/6 mice that were 8 weeks old. Eight weeks post-inductions, animals were allocated to one of five groups: a control group, a streptozotocin-induced diabetic mouse group receiving two intracavernous 20 µL phosphate-buffered saline injections, or one of three bone morphogenetic protein 2 groups administered two injections of bone morphogenetic protein 2 protein (1, 5, or 10 µg) diluted in 20 µL of phosphate-buffered saline within a 3-day interval between the first and second injections. The erectile functions were assessed 2 weeks after phosphate-buffered saline or bone morphogenetic protein 2 protein injections by recording the intracavernous pressure through cavernous nerve electrical stimulation. Angiogenic activities and nerve regenerating effects of bone morphogenetic protein 2 were determined in penile tissues, aorta, vena cava, the main pelvic ganglions, the dorsal roots, and from the primary cultured mouse cavernous endothelial cells. Moreover, fibrosis-related factor protein expressions were evaluated by western blotting. RESULTS: Erectile function recovery to 81% of the control value in diabetic mice was found with intracavernous bone morphogenetic protein 2 injection (5 µg/20 µL). Pericytes and endothelial cells were extensively restored. It was confirmed that angiogenesis was promoted in the corpus cavernosum of diabetic mice treated with bone morphogenetic protein 2 through increased ex vivo sprouting of aortic rings, vena cava and penile tissues, and migration and tube formation of mouse cavernous endothelial cells. Bone morphogenetic protein 2 protein enhanced cell proliferation and reduced apoptosis in mouse cavernous endothelial cells and penile tissues, and promoted neurite outgrowth in major pelvic ganglia and dorsal root ganglia under high-glucose conditions. Furthermore, bone morphogenetic protein 2 suppressed fibrosis by reducing mouse cavernous endothelial cell fibronectin, collagen 1, and collagen 4 levels under high-glucose conditions. CONCLUSION: Bone morphogenetic protein 2 modulates neurovascular regeneration and inhibits fibrosis to revive the mouse erection function in diabetic conditions. Our findings propose that the bone morphogenetic protein 2 protein represents a novel and promising approach to treating diabetes-related erectile dysfunction.


Asunto(s)
Diabetes Mellitus Experimental , Disfunción Eréctil , Animales , Humanos , Masculino , Ratones , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/farmacología , Colágeno/metabolismo , Colágeno/farmacología , Diabetes Mellitus Experimental/complicaciones , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/etiología , Disfunción Eréctil/metabolismo , Glucosa/metabolismo , Ratones Endogámicos C57BL , Erección Peniana , Pene , Fosfatos/metabolismo , Fosfatos/farmacología , Estreptozocina
3.
Cardiovasc Res ; 119(3): 813-825, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36166408

RESUMEN

AIMS: Components of bone morphogenetic protein (BMP) signalling have been implicated in both pathogenesis of pulmonary arterial hypertension (PAH) and endothelial-mesenchymal transition (EndoMT). In particular, the importance of BMP type 2 receptor in these processes has been extensively analysed. However, the contribution of BMP type 1 receptors (BMPR1s) to the onset of PAH and EndoMT remains poorly understood. BMPR1A, one of BMPR1s, was recently implicated in the pathogenesis of PAH, and was found to be down-regulated in the lungs of PAH patients, neither the downstream mechanism nor its contribution to EndoMT has been described. Therefore, we aim to delineate the role of endothelial BMPR1A in modulating EndoMT and pathogenesis of PAH. METHODS AND RESULTS: We find that BMPR1A knockdown in endothelial cells (ECs) induces hallmarks of EndoMT, and deletion of endothelial Bmpr1a in adult mice (Bmpr1aiECKO) leads to development of PAH-like symptoms due to excessive EndoMT. By lineage tracing, we show that endothelial-derived smooth muscle cells are increased in endothelial Bmpr1a-deleted mice. Mechanistically, we identify ZEB1 as a primary target for BMPR1A in this setting; upon BMPR1A activation, ID2 physically interacts and sequesters ZEB1 to attenuate transcription of Tgfbr2, which in turn lowers the responses of ECs towards transforming growth factor beta (TGFß) stimulation and prevents excessive EndoMT. In Bmpr1aiECKO mice, administering endothelial targeting lipid nanoparticles containing siRNA against Tgfbr2 effectively ameliorate PAH, reiterating the importance of BMPR1A-ID2/ZEB1-TGFBR2 axis in modulating progression of EndoMT and pathogenesis of PAH. CONCLUSIONS: We demonstrate that BMPR1A is key to maintain endothelial identity and to prevent excessive EndoMT. We identify BMPR1A-induced interaction between ID2 and ZEB1 is the key regulatory step for onset of EndoMT and pathogenesis of PAH. Our findings indicate that BMPR1A-ID2/ZEB1-TGFBR2 signalling axis could serve as a potential novel therapeutic target for PAH and other EndoMT-related vascular disorders.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1 , Hipertensión Pulmonar , Proteína 2 Inhibidora de la Diferenciación , Hipertensión Arterial Pulmonar , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Animales , Ratones , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Transición Epitelial-Mesenquimal , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
4.
EMBO J ; 41(9): e109890, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35243676

RESUMEN

Endothelial cells differ from other cell types responsible for the formation of the vascular wall in their unusual reliance on glycolysis for most energy needs, which results in extensive production of lactate. We find that endothelium-derived lactate is taken up by pericytes, and contributes substantially to pericyte metabolism including energy generation and amino acid biosynthesis. Endothelial-pericyte proximity is required to facilitate the transport of endothelium-derived lactate into pericytes. Inhibition of lactate production in the endothelium by deletion of the glucose transporter-1 (GLUT1) in mice results in loss of pericyte coverage in the retina and brain vasculatures, leading to the blood-brain barrier breakdown and increased permeability. These abnormalities can be largely restored by oral lactate administration. Our studies demonstrate an unexpected link between endothelial and pericyte metabolisms and the role of endothelial lactate production in the maintenance of the blood-brain barrier integrity. In addition, our observations indicate that lactate supplementation could be a useful therapeutic approach for GLUT1 deficiency metabolic syndrome patients.


Asunto(s)
Barrera Hematoencefálica , Pericitos , Animales , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Ácido Láctico/metabolismo , Ratones , Pericitos/metabolismo
5.
FASEB J ; 36(1): e22103, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34921695

RESUMEN

Ubiquitination has been shown to provide an essential regulatory role in modulating the duration and amplitude of the signaling activity in angiogenesis. While successive enzymatic reactions mediated by three distinct types of enzymes commonly known as E1, E2, and E3 are required for ubiquitination, the role of E3s which govern the final step of ubiquitination has been extensively analyzed in angiogenesis. In contrast, the role of E2s, which determine the context and functional consequences of ubiquitination, remains largely unknown with respect to angiogenesis. To better elucidate the role of E2s in modulating endothelial behaviors during angiogenesis, we first systematically analyze the expression pattern of E2s in endothelial cells (ECs) using previously published scRNA-seq data and identify ubiquitin-conjugating enzyme variant 1 (UBE2V1), an unconventional E2 without innate catalytic activity, as one of the most abundantly expressed E2s in ECs. While ubiquitously expressed in diverse cell types, abrogation of UBE2V1 significantly impairs proliferation and viability of human umbilical vein endothelial cells (HUVECs) without affecting other cell types, suggesting that UBE2V1 is likely to possess nonredundant functions in ECs. Consistent with this idea, UBE2V1 appears to be critical for morphogenesis and migration of ECs during angiogenesis. Interestingly, we find that UBE2V1 is essential for fibroblast growth factor 2 (FGF2)-induced angiogenesis, but appears to have minor effects on vascular endothelial growth factor-A-induced angiogenesis in vitro as well as in vivo. Therefore, it seems that UBE2V1 could enable ECs to distinguish two related yet distinct angiogenic cues. Mechanistically, we show that UBE2V1 promotes ubiquitination of MEK kinase 1, a key mediator of FGF2 signaling, to enhance phosphorylation of extracellular signal-regulated kinase 1/2 in HUVECs. Taken together, our results illustrate the unique role of UBE2V1 as a key modulator for angiogenic behaviors in ECs.


Asunto(s)
Proliferación Celular , Endotelio Vascular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Sistema de Señalización de MAP Quinasas , Factores de Transcripción/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células PC-3 , Factores de Transcripción/genética , Enzimas Ubiquitina-Conjugadoras/genética
6.
Circulation ; 144(16): 1308-1322, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34474596

RESUMEN

BACKGROUND: Angiogenesis is a dynamic process that involves expansion of a preexisting vascular network that can occur in a number of physiological and pathological settings. Despite its importance, the origin of the new angiogenic vasculature is poorly defined. In particular, the primary subtype of endothelial cells (capillary, venous, arterial) driving this process remains undefined. METHODS: Endothelial cells were fate-mapped with the use of genetic markers specific to arterial and capillary cells. In addition, we identified a novel venous endothelial marker gene (Gm5127) and used it to generate inducible venous endothelium-specific Cre and Dre driver mouse lines. Contributions of these various types of endothelial cells to angiogenesis were examined during normal postnatal development and in disease-specific setting. RESULTS: Using a comprehensive set of endothelial subtype-specific inducible reporter mice, including tip, arterial, and venous endothelial reporter lines, we showed that venous endothelial cells are the primary endothelial subtype responsible for the expansion of an angiogenic vascular network. During physiological angiogenesis, venous endothelial cells proliferate, migrating against the blood flow and differentiating into tip, capillary, and arterial endothelial cells of the new vasculature. Using intravital 2-photon imaging, we observed venous endothelial cells migrating against the blood flow to form new blood vessels. Venous endothelial cell migration also plays a key role in pathological angiogenesis. This was observed both in formation of arteriovenous malformations in mice with inducible endothelium-specific Smad4 deletion mice and in pathological vessel growth seen in oxygen-induced retinopathy. CONCLUSIONS: Our studies establish that venous endothelial cells are the primary endothelial subtype responsible for normal expansion of vascular networks, formation of arteriovenous malformations, and pathological angiogenesis. These observations highlight the central role of the venous endothelium in normal development and disease pathogenesis.


Asunto(s)
Células Endoteliales/metabolismo , Animales , Humanos , Ratones , Ratones Transgénicos , Neovascularización Patológica
7.
Front Cell Dev Biol ; 9: 673396, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34235147

RESUMEN

Bone morphogenetic proteins (BMPs), which compose the largest group of the transforming growth factor-ß (TGF-ß) superfamily, have been implied to play a crucial role in diverse physiological processes. The most intriguing feature of BMP signaling is that it elicits heterogeneous responses from cells with equivalent identity, thus permitting highly context-dependent signaling outcomes. In endothelial cells (ECs), which are increasingly perceived as a highly heterogeneous population of cells with respect to their morphology, function, as well as molecular characteristics, BMP signaling has shown to elicit diverse and often opposite effects, illustrating the innate complexity of signaling responses. In this review, we provide a concise yet comprehensive overview of how outcomes of BMP signaling are modulated in a context-dependent manner with an emphasis on the underlying molecular mechanisms and summarize how these regulations of the BMP signaling promote endothelial heterogeneity.

8.
Blood ; 138(21): 2117-2128, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34115847

RESUMEN

Shwachman-Diamond syndrome (SDS; OMIM #260400) is caused by variants in SBDS (Shwachman-Bodian-Diamond syndrome gene), which encodes a protein that plays an important role in ribosome assembly. Recent reports suggest that recessive variants in EFL1 are also responsible for SDS. However, the precise genetic mechanism that leads to EFL1-induced SDS remains incompletely understood. Here we present 3 unrelated Korean SDS patients who carry biallelic pathogenic variants in EFL1 with biased allele frequencies, resulting from a bone marrow-specific somatic uniparental disomy in chromosome 15. The recombination events generated cells that were homozygous for the relatively milder variant, allowing for the evasion of catastrophic physiologic consequences. However, the milder EFL1 variant was still solely able to impair 80S ribosome assembly and induce SDS features in cell line and animal models. The loss of EFL1 resulted in a pronounced inhibition of terminal oligopyrimidine element-containing ribosomal protein transcript 80S assembly. Therefore, we propose a more accurate pathogenesis mechanism of EFL1 dysfunction that eventually leads to aberrant translational control and ribosomopathy.


Asunto(s)
Factores de Elongación de Péptidos/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Síndrome de Shwachman-Diamond/genética , Disomía Uniparental/genética , Adulto , Alelos , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Moleculares , Mutación Puntual
9.
J Lipid Atheroscler ; 10(1): 42-56, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33537252

RESUMEN

Dyslipidemia related diseases such as hyperlipidemia and atherosclerosis are the leading cause of death in humans. While cellular and molecular basis on the pathophysiology of dyslipidemia has been extensively investigated over decades, we still lack comprehensive understanding on the etiology of dyslipidemia due to the complexity and the innate multimodality of the diseases. While mouse has been the model organism of choice to investigate the pathophysiology of human dyslipidemia, zebrafish, a small freshwater fish which has traditionally used to study vertebrate development, has recently emerged as an alternative model organism. In this review, we will provide comprehensive perspective on zebrafish as a model organism for human dyslipidemia; we will discuss the attributes of zebrafish as a model, and compare the lipid metabolism in zebrafish and humans. In addition, we will summarize current landscape of zebrafish-based dyslipidemia research.

10.
FASEB J ; 35(3): e21386, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33565137

RESUMEN

Bone Morphogenetic Protein (BMP) signaling regulates diverse biological processes. Upon ligand binding, BMP receptors (BMPRs) phosphorylate SMAD1/5 and other noncanonical downstream effectors to induce transcription of downstream targets. However, the precise role of individual BMP receptors in this process remains largely unknown due to the complexity of downstream signaling and the innate promiscuity of ligand-receptor interaction. To delineate unique downstream effectors of individual BMPR1s, we analyzed the transcriptome of human umbilical endothelial cells (HUVECs) expressing three distinct constitutively active BMPR1s of which expression was detected in endothelial cells (ECs). From our analyses, we identified a number of novel downstream targets of BMPR1s in ECs. More importantly, we found that each BMPR1 possesses a distinctive set of downstream effectors, suggesting that each BMPR1 is likely to retain unique function in ECs. Taken together, our analyses suggest that each BMPR1 regulates downstream targets non-redundantly in ECs to create context-dependent outcomes of the BMP signaling.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/fisiología , Perfilación de la Expresión Génica/métodos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptores de Activinas Tipo I/genética , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Smad1/fisiología , Proteína Smad5/fisiología
11.
Biochem Biophys Res Commun ; 534: 359-366, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33256983

RESUMEN

Paired Box (Pax) gene family, a group of transcription regulators have been implicated in diverse physiological processes. However, their role during hematopoiesis which generate a plethora of blood cells remains largely unknown. Using a previously reported single cell transcriptomics data, we analyzed the expression of individual Pax family members in hematopoietic cells in zebrafish. We have identified that Pax9, which is an essential regulator for odontogenesis and palatogenesis, is selectively localized within a single cluster of the hematopoietic lineage. To further analyze the function of Pax9 in hematopoiesis, we generated two independent pax9 knock-out mutants using the CRISPR-Cas9 technique. We found that Pax9 appears to be an essential regulator for granulopoiesis but dispensable for erythropoiesis during development, as lack of pax9 selectively decreased the number of neutrophils with a concomitant decrease in the expression level of neutrophil markers. In addition, embryos, where pax9 was functionally disrupted by injecting morpholinos, failed to increase the number of neutrophils in response to pathogenic bacteria, suggesting that Pax9 is not only essential for developmental granulopoiesis but also emergency granulopoiesis. Due to the inability to initiate emergency granulopoiesis, innate immune responses were severely compromised in pax9 morpholino-mediated embryos, increasing their susceptibility and mortality. Taken together, our data indicate that Pax9 is essential for granulopoiesis and promotes innate immunity in zebrafish larvae.


Asunto(s)
Eritropoyesis/inmunología , Mielopoyesis/inmunología , Factor de Transcripción PAX9/inmunología , Proteínas de Pez Cebra/inmunología , Pez Cebra/inmunología , Animales , Animales Modificados Genéticamente , Infecciones Bacterianas/inmunología , Sistemas CRISPR-Cas , Eritropoyesis/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Granulocitos/inmunología , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Mielopoyesis/genética , Factor de Transcripción PAX9/deficiencia , Factor de Transcripción PAX9/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
12.
Front Cell Dev Biol ; 8: 589717, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330468

RESUMEN

Endothelial cells appear to emerge from diverse progenitors. However, to which extent their developmental origin contributes to define their cellular and molecular characteristics remains largely unknown. Here, we report that a subset of endothelial cells that emerge from the tailbud possess unique molecular characteristics that set them apart from stereotypical lateral plate mesoderm (LPM)-derived endothelial cells. Lineage tracing shows that these tailbud-derived endothelial cells arise at mid-somitogenesis stages, and surprisingly do not require Npas4l or Etsrp function, indicating that they have distinct spatiotemporal origins and are regulated by distinct molecular mechanisms. Microarray and single cell RNA-seq analyses reveal that somitogenesis- and neurogenesis-associated transcripts are over-represented in these tailbud-derived endothelial cells, suggesting that they possess a unique transcriptomic signature. Taken together, our results further reveal the diversity of endothelial cells with respect to their developmental origin and molecular properties, and provide compelling evidence that the molecular characteristics of endothelial cells may reflect their distinct developmental history.

13.
Front Cell Dev Biol ; 8: 603306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330499

RESUMEN

Unpaired fins, which are the most ancient form of locomotory appendages in chordates, had emerged at least 500 million years ago. While it has been suggested that unpaired fins and paired fins share structural similarities, cellular and molecular mechanisms that regulate the outgrowth of the former have not been fully elucidated yet. Using the ventral fin fold in zebrafish as a model, here, we investigate how the outgrowth of the unpaired fin is modulated. We show that Bone Morphogenetic Protein (BMP) signaling restricts extension of the ventral fin fold along the proximodistal axis by modulating diverse aspects of cellular behaviors. We find that lack of BMP signaling, either caused by genetic or chemical manipulation, prolongs the proliferative capacity of epithelial cells and substantially increases the number of cells within the ventral fin fold. In addition, inhibition of BMP signaling attenuates the innate propensity of cell division along the anteroposterior axis and shifts the orientation of cell division toward the proximodistal axis. Moreover, abrogating BMP signaling appears to induce excessive distal migration of cells within the ventral fin fold, and therefore precipitates extension along the proximodistal axis. Taken together, our data suggest that BMP signaling restricts the outgrowth of the ventral fin fold during zebrafish development.

14.
Biochem Biophys Res Commun ; 530(4): 638-643, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32768193

RESUMEN

Hyperlipidemia is an abnormal elevation of lipid level in blood, which affects more than 100 million people in US. Zebrafish has recently emerged as a model to study pathophysiology associated with hyperlipidemia. As a poikilotherm, the innate response toward a high fat diet regimen in zebrafish is likely to be distinct from humans, and therefore, additional caution is warranted to appropriately interpret results obtained from zebrafish model. However, to date, detailed comparative analyses on similarities and dissimilarities between zebrafish and mammals, in particular, at molecular level, have not been reported yet. Here, we identified changes in hepatic specific transcriptomic profiles of zebrafish fed with a high fat diet regimen and comparatively analyzed transcriptomic changes in zebrafish and mice. While a number of previously identified risk factors for human hyperlipidemia has been upregulated in zebrafish fed with a high fat diet regimen, zebrafish hepatic transcriptome does not share high similarity with mice. Despite these differences, KEGG pathway analyses revealed that similar signaling pathways upregulated in zebrafish and mice as a response to a high fat diet. Our data show that these two species may utilize species-specific set of genes to upregulate common signaling pathways, indicating evolutionary convergence between poikilotherm and homeotherm in regulating lipid metabolism and validating the use of zebrafish as a model for human hyperlipidemia and associated diseases.


Asunto(s)
Metabolismo de los Lípidos , Ratones/genética , Transcriptoma , Pez Cebra/genética , Animales , Evolución Biológica , Dieta Alta en Grasa , Ontología de Genes , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Lípidos/genética , Ratones/metabolismo , Pez Cebra/metabolismo
15.
Sci Rep ; 10(1): 4967, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188912

RESUMEN

Aging is associated with increased prevalence of skeletal and cardiac muscle disorders, such as sarcopenia and cardiac infarction. In this study, we constructed a compendium of purified ginsenoside compounds from Panax ginseng C.A. Meyer, which is a traditional Korean medicinal plant used to treat for muscle weakness. Skeletal muscle progenitor cell-based screening identified three compounds that enhance cell viability, of which 20(R)-ginsenoside Rh2 showed the most robust response. 20(R)-ginsenoside Rh2 increased viability in myoblasts and cardiomyocytes, but not fibroblasts or disease-related cells. The cellular mechanism was identified as downregulation of cyclin-dependent kinase inhibitor 1B (p27Kip1) via upregulation of Akt1/PKB phosphorylation at serine 473, with the orientation of the 20 carbon epimer being crucially important for biological activity. In zebrafish and mammalian models, 20(R)-ginsenoside Rh2 enhanced muscle cell proliferation and accelerated recovery from degeneration. Thus, we have identified 20(R)-ginsenoside Rh2 as a p27Kip1 inhibitor that may be developed as a natural therapeutic for muscle degeneration.


Asunto(s)
Ginsenósidos/farmacología , Músculo Esquelético/citología , Infarto del Miocardio/tratamiento farmacológico , Miocardio/citología , Panax/química , Saponinas/química , Células Madre/metabolismo , Adulto , Animales , Supervivencia Celular , Ginsenósidos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Regeneración , Pez Cebra
16.
Sci Rep ; 9(1): 4152, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842432

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

17.
Sci Rep ; 8(1): 9840, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29959335

RESUMEN

Intussusceptive angiogenesis (IA) is a complementary method to sprouting angiogenesis (SA). The hallmark of IA is formation of trans-capillary tissue pillars, their fusion and remodeling of the vascular plexus. In this study, we investigate the formation of the zebrafish caudal vein plexus (CVP) in Tg(fli1a:eGFP) y7 and the synergistic interaction of IA and SA in crafting the archetypical angio-architecture of the CVP. Dynamic in vivo observations and quantitative analyses revealed that the primitive CVP during development was initiated through SA. Further vascular growth and remodeling occurred by IA. Intussusception contributed to the expansion of the CVP by formation of new pillars. Those pillars arose in front of the already existing ones; and in a subsequent step the serried pillars elongated and fused together. This resulted in segregation of larger vascular segments and remodelling of the disorganized vascular meshwork into hierarchical tree-like arrangement. Blood flow was the main driving force for IA, particularly shear stress geometry at the site of pillar formation and fusion. Computational simulations based on hemodynamics showed drop in shear stress levels at locations of new pillar formation, pillar elongation and fusion. Correlative 3D serial block face scanning electron microscopy confirmed the morphological substrate of the phenomena of the pillar formation observed in vivo. The data obtained demonstrates that after the sprouting phase and formation of the primitive capillary meshwork, the hemodynamic conditions enhance intussusceptive segregation of hierarchical vascular tree i.e. intussusceptive arborization resulting in complex vascular structures with specific angio-architecture.


Asunto(s)
Hemodinámica , Morfogénesis , Neovascularización Fisiológica , Venas/crecimiento & desarrollo , Pez Cebra/fisiología , Animales , Intususcepción , Venas/fisiología
19.
Oncotarget ; 8(49): 84610-84611, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29156656
20.
Nature ; 545(7653): 224-228, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28467822

RESUMEN

Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are important to these processes. Although much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism, little is understood about the role of fibroblast growth factors (FGFs) in this context. Here we identify FGF receptor (FGFR) signalling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signalling inputs results in decreased glycolysis, leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/Fgfr3 double mutant mice, while HK2 overexpression partly rescues the defects caused by suppression of FGF signalling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Glucólisis , Neovascularización Fisiológica , Transducción de Señal , Animales , Movimiento Celular , Proliferación Celular , Femenino , Hexoquinasa/metabolismo , Linfangiogénesis , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...