Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 187: 108651, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38648692

RESUMEN

BACKGROUND: Air pollution is a recognized risk factor for cardiovascular disease (CVD). Temperature is also linked to CVD, with a primary focus on acute effects. Despite the close relationship between air pollution and temperature, their health effects are often examined separately, potentially overlooking their synergistic effects. Moreover, fewer studies have performed mixture analysis for multiple co-exposures, essential for adjusting confounding effects among them and assessing both cumulative and individual effects. METHODS: We obtained hospitalization records for residents of 14 U.S. states, spanning 2000-2016, from the Health Cost and Utilization Project State Inpatient Databases. We used a grouped weighted quantile sum regression, a novel approach for mixture analysis, to simultaneously evaluate cumulative and individual associations of annual exposures to four grouped mixtures: air pollutants (elemental carbon, ammonium, nitrate, organic carbon, sulfate, nitrogen dioxide, ozone), differences between summer and winter temperature means and their long-term averages during the entire study period (i.e., summer and winter temperature mean anomalies), differences between summer and winter temperature standard deviations (SD) and their long-term averages during the entire study period (i.e., summer and winter temperature SD anomalies), and interaction terms between air pollutants and summer and winter temperature mean anomalies. The outcomes are hospitalization rates for four prevalent CVD subtypes: ischemic heart disease, cerebrovascular disease, heart failure, and arrhythmia. RESULTS: Chronic exposure to air pollutant mixtures was associated with increased hospitalization rates for all CVD subtypes, with heart failure being the most susceptible subtype. Sulfate, nitrate, nitrogen dioxide, and organic carbon posed the highest risks. Mixtures of the interaction terms between air pollutants and temperature mean anomalies were associated with increased hospitalization rates for all CVD subtypes. CONCLUSIONS: Our findings identified critical pollutants for targeted emission controls and suggested that abnormal temperature changes chronically affected cardiovascular health by interacting with air pollution, not directly.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Hospitalización , Estaciones del Año , Temperatura , Hospitalización/estadística & datos numéricos , Enfermedades Cardiovasculares/epidemiología , Humanos , Contaminantes Atmosféricos/análisis , Estados Unidos/epidemiología , Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Persona de Mediana Edad , Masculino , Femenino , Anciano , Material Particulado/análisis , Adulto
2.
Nat Commun ; 15(1): 1518, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374182

RESUMEN

The association between PM2.5 and non-respiratory infections is unclear. Using data from Medicare beneficiaries and high-resolution datasets of PM2.5 and its constituents across 39,296 ZIP codes in the U.S between 2000 and 2016, we investigated the associations between annual PM2.5, PM2.5 constituents, source-specific PM2.5, and hospital admissions from non-respiratory infections. Each standard deviation (3.7-µg m-3) increase in PM2.5 was associated with a 10.8% (95%CI 10.8-11.2%) increase in rate of hospital admissions from non-respiratory infections. Sulfates (30.8%), Nickel (22.5%) and Copper (15.3%) contributed the largest weights in the observed associations. Each standard deviation increase in PM2.5 components sourced from oil combustion, coal burning, traffic, dirt, and regionally transported nitrates was associated with 14.5% (95%CI 7.6-21.8%), 18.2% (95%CI 7.2-30.2%), 20.6% (95%CI 5.6-37.9%), 8.9% (95%CI 0.3-18.4%) and 7.8% (95%CI 0.6-15.5%) increases in hospital admissions from non-respiratory infections. Our results suggested that non-respiratory infections are an under-appreciated health effect of PM2.5.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Anciano , Humanos , Estados Unidos/epidemiología , Material Particulado/efectos adversos , Material Particulado/análisis , Medicare , Polvo , Carbón Mineral , Hospitales , Contaminación del Aire/efectos adversos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/análisis
3.
Environ Res ; 245: 118092, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163540

RESUMEN

BACKGROUND: Previous studies have linked noise exposure with adverse cardiovascular events. However, evidence remains inconsistent, and most previous studies only focused on traffic noise, excluding other anthropogenic sources like constructions, industrial process and commercial activities. Additionally, few studies have been conducted in the U.S. or evaluated the non-linear exposure-response relationships. METHODS: We conducted a relative incidence analysis study using all cardiovascular diseases mortality as cases (n = 936,019) and external causes mortality (n = 232,491) as contrast outcomes. Mortality records geocoded at residential addresses were obtained from five U.S. states (Indiana, 2007; Kansas, 2007-2009, Missouri, 2010-2019, Ohio, 2007-2013, Texas, 2007-2016). Time-invariant long-term noise exposure was obtained from a validated model developed based on acoustical measurements across 2000-2014. Noises from both natural sources (natural activities, including animals, insects, winds, water flows, thunder, etc.) and anthropogenic sources (human activities, including transportation, industrial activities, community facilities & infrastructures, commercial activities, entertainments, etc.) were included. We used daytime and nighttime total anthropogenic noise & day-night average sound pressure level combining natural and anthropogenic sources as exposures. Logistic regression models were fit controlling for Census tract-level & individual-level characteristics. We examined potential modification by sex by interaction terms and potential non-linear associations by thin plate spline terms. RESULTS: We observed positive associations for daytime anthropogenic L50 (sound level exceeded 50% of time) noise (10-dBA OR = 1.047, 95%CI 1.025-1.069), nighttime anthropogenic L50 noise (10-dBA OR = 1.061, 95%CI 1.033-1.091) in a two-exposure-term model, and overall Ldn (day-night average) sound pressure level (10-dBA OR = 1.064, 95%CI 1.040-1.089) in single-exposure-term model. Females were more susceptible to all three exposures. All exposures showed monotonic positive associations with cardiovascular mortality up to certain thresholds around 45-55 dBA, with a generally flattened or decreasing trend beyond those thresholds. CONCLUSIONS: Both daytime anthropogenic and nighttime anthropogenic noises were associated with cardiovascular disease mortality, and associations were stronger in females.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Femenino , Enfermedades Cardiovasculares/epidemiología , Exposición a Riesgos Ambientales/análisis , Ruido , Transportes , Estudios de Cohortes
4.
Environ Res ; 217: 114797, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379232

RESUMEN

BACKGROUND: Environmental metal exposures have been associated with multiple deleterious health endpoints. DNA methylation (DNAm) may provide insight into the mechanisms underlying these relationships. Toenail metals are non-invasive biomarkers, reflecting a medium-term time exposure window. OBJECTIVES: This study examined variation in leukocyte DNAm and toenail arsenic (As), cadmium (Cd), lead (Pb), manganese (Mn), and mercury (Hg) among elderly men in the Normative Aging Study, a longitudinal cohort. METHODS: We repeatedly collected samples of blood and toenail clippings. We measured DNAm in leukocytes with the Illumina HumanMethylation450 K BeadChip. We first performed median regression to evaluate the effects of each individual toenail metal on DNAm at three levels: individual cytosine-phosphate-guanine (CpG) sites, regions, and pathways. Then, we applied a Bayesian kernel machine regression (BKMR) to assess the joint and individual effects of metal mixtures on DNAm. Significant CpGs were identified using a multiple testing correction based on the independent degrees of freedom approach for correlated outcomes. The approach considers the effective degrees of freedom in the DNAm data using the principal components that explain >95% variation of the data. RESULTS: We included 564 subjects (754 visits) between 1999 and 2013. The numbers of significantly differentially methylated CpG sites, regions, and pathways varied by metals. For example, we found six significant pathways for As, three for Cd, and one for Mn. The As-associated pathways were associated with cancer (e.g., skin cancer) and cardiovascular disease, whereas the Cd-associated pathways were related to lung cancer. Metal mixtures were also associated with 47 significant CpG sites, as well as pathways, mainly related to cancer and cardiovascular disease. CONCLUSIONS: This study provides an approach to understanding the potential epigenetic mechanisms underlying observed relations between toenail metals and adverse health endpoints.


Asunto(s)
Arsénico , Enfermedades Cardiovasculares , Mercurio , Masculino , Humanos , Anciano , Metilación de ADN , Cadmio , Epigenoma , Uñas , Teorema de Bayes , Metales/toxicidad , Envejecimiento , Arsénico/toxicidad , Leucocitos , Manganeso
5.
Environ Health ; 21(1): 96, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36221093

RESUMEN

BACKGROUND: Numerous studies have documented PM2.5's links with adverse health outcomes. Comparatively fewer studies have evaluated specific PM2.5 components. The lack of exposure measurements and high correlation among different PM2.5 components are two limitations. METHODS: We applied a novel exposure prediction model to obtain annual Census tract-level concentrations of 15 PM2.5 components (Zn, V, Si, Pb, Ni, K, Fe, Cu, Ca, Br, SO42-, NO3-, NH4+, OC, EC) in Massachusetts from 2000 to 2015, to which we matched geocoded deaths. All non-accidental mortality, cardiovascular mortality, and respiratory mortality were examined for the population aged 18 or over. Weighted quantile sum (WQS) regression models were used to examine the cumulative associations between PM2.5 components mixture and outcomes and each component's contributions to the cumulative associations. We have fit WQS models on 15 PM2.5 components and a priori identified source groups (heavy fuel oil combustion, biomass burning, crustal matter, non-tailpipe traffic source, tailpipe traffic source, secondary particles from power plants, secondary particles from agriculture, unclear source) for the 15 PM2.5 components. Total PM2.5 mass analysis and single component associations were also conducted through quasi-Poisson regression models. RESULTS: Positive cumulative associations between the components mixture and all three outcomes were observed from the WQS models. Components with large contribution to the cumulative associations included K, OC, and Fe. Biomass burning, traffic emissions, and secondary particles from power plants were identified as important source contributing to the cumulative associations. Mortality rate ratios for cardiovascular mortality were of greater magnitude than all non-accidental mortality and respiratory mortality, which is also observed in cumulative associations estimated from WQS, total PM2.5 mass analysis, and single component associations. CONCLUSION: We have found positive associations between the mixture of 15 PM2.5 components and all non-accidental mortality, cardiovascular mortality, and respiratory mortality. Among these components, Fe, K, and OC have been identified as having important contribution to the cumulative associations. The WQS results also suggests potential source effects from biomass burning, traffic emissions, and secondary particles from power plants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Aceites Combustibles , Enfermedades Respiratorias , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Enfermedades Cardiovasculares/inducido químicamente , Monitoreo del Ambiente , Aceites Combustibles/análisis , Humanos , Plomo/análisis , Material Particulado/análisis , Enfermedades Respiratorias/epidemiología
6.
Environ Int ; 170: 107594, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36283157

RESUMEN

BACKGROUND & AIM: Numerous studies have linked air pollution with cardiovascular diseases. Fewer studies examined the associations at low concentration levels or assessed potential modifiers. Some investigations only examined hospitalizations, which can miss incident cases. This study aims to address these gaps through a nationwide cohort study of Medicare enrollees. METHODS: Our study cohort comprise all Medicare enrollees (≥65 years old) continuously enrolled in the fee-for-service program and both Medicare part A and B across the contiguous U.S. from 2000 to 2016. We examined the associations of population-weighted ZIP code-level annual average PM2.5, NO2, and warm-season O3 (May-October), with the first diagnoses of atrial fibrillation (AF), congestive heart failure (CHF), and stroke. We fit multi-pollutant Cox proportional hazards models adjusted for individual demographic characteristics and area-level covariates. We further examined these associations at low pollutant concentration levels and the potential effect modifications by race/ethnicity and comorbidities (diabetes, hypertension, hyperlipidemia). RESULTS: Elevated PM2.5 and NO2 levels were associated with increased incidence of AF, CHF, and stroke. For each 1 µg/m3 increase in annual PM2.5, hazard ratios (HRs) were 1.0059 (95%CI: 1.0054-1.0064), 1.0260 (95%CI: 1.0256-1.0264), and 1.0279 (95%CI: 1.0274-1.0284), respectively. For each1 ppb increase in annual NO2, HRs are 1.0057 (95%CI: 1.0056-1.0059), 1.0112 (95%CI: 1.0110-1.0113), and 1.0095 (95%CI: 1.0093-1.0096), respectively. For warm-season O3, each 1 ppb increase was associated with increased incidence of CHF (HR=1.0035, 95%CI: 1.0033-1.0037) and stroke (HR=1.0026, 95%CI: 1.0023-1.0028). Larger magnitudes of HRs were observed when restricted to pollutants levels lower than NAAQS standards. Generally higher risks were observed for Black people and diabetics. CONCLUSIONS: Long-term exposure to PM2.5, NO2, and warm-season O3 were associated with increased incidence of cardiovascular diseases, even at low pollutant concentration levels. Black people and people with diabetes were found to be vulnerable populations.


Asunto(s)
Contaminación del Aire , Anciano , Humanos , Contaminación del Aire/efectos adversos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Estudios de Cohortes , Diabetes Mellitus/epidemiología , Diabetes Mellitus/etiología , Medicare/estadística & datos numéricos , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiología , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...