Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 34(6): 1249-1259, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38938004

RESUMEN

It remains to be determined whether there is a geographical distribution pattern and phylogenetic signals for the Mycena strains with seed germination of the orchid plant Gastrodia elata. This study analyzed the community composition and phylogenetics of 72 Mycena strains associated with G. elata varieties (G. elata. f. glauca and G. elata. f. viridis) using multiple gene fragments (ITS+nLSU+SSU). We found that (1) these diverse Mycena phylogenetically belong to the Basidiospore amyloid group. (2) There is a phylogenetic signal of Mycena for germination of G. elata. Those strains phylogenetically close to M. abramsii, M. polygramma, and an unclassified Mycena had significantly higher germination rates than those to M. citrinomarginata. (3) The Mycena distribution depends on geographic site and G. elata variety. Both unclassified Mycena group 1 and the M. abramsii group were dominant for the two varieties of G. elata; in contrast, the M. citrinomarginata group was dominant in G. elata f. glauca but absent in G. elata f. viridis. Our results indicate that the community composition of numerous Mycena resources in the Zhaotong area varies by geographical location and G. elata variety. Importantly, our results also indicate that Mycena's phylogenetic status is correlated with its germination rate.


Asunto(s)
Gastrodia , Germinación , Filogenia , Gastrodia/microbiología , Gastrodia/genética , ADN de Hongos/genética , Semillas/microbiología , Semillas/crecimiento & desarrollo , Basidiomycota/genética , Basidiomycota/clasificación , Basidiomycota/fisiología
2.
Ecol Evol ; 14(2): e11004, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38389997

RESUMEN

Full myco-heterotrophic orchid Gastrodia elata Bl. is widely distributed in Northeast Asia, and previous research has not fully investigated the symbiotic fungal community of its early immature tubers. This study utilized Illumina sequencing to compare symbiotic fungal communities in natural G. elata immature tubers and their habitats. LEfSe (Linear Discriminant Analysis Effect Size) was used to screen for Biomarkers that could explain variations among different fungal communities, and correlation analyses were performed among Biomarkers and other common orchid mycorrhizal fungi. Our results illustrate that the symbiotic fungal communities of immature G. elata tubers cannot be simply interpreted as subsets of the environmental fungal communities because some key members cannot be traced back to the environment. The early growth of G. elata was related to a small group of fungi, such as Sebacina, Thelephora, and Inocybe, which were also common mycorrhizal fungi from other orchids. In addition, Mycena, Auricularia, and Cryptococcus were unique fungal partners of G. elata, and many new species have yet to be discovered. Possible symbiotic Mycena should be M. plumipes and its sibling species in this case. Our results provide insight into the symbiotic partner switch and trophic pattern change during the development and maturation of G. elata.

3.
Pathol Res Pract ; 247: 154536, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37235908

RESUMEN

As a member of PHB (prohibitin1) family, PHB plays important roles in many cancers, but its property in bladder carcinoma aggressiveness is unknown. This research was to explore the function and potential mechanism of PHB in bladder carcinoma in vivo and in vitro. The invasive abilities of cancer cell were determined by transwell and wound-healing assays. The function of PHB was confirmed by gene knockdown and overexpression methods. Further in vivo confirmation was performed in a nude mouse model with lung metastasis. The relationship of PHB and ß-catenin was confirmed by immunoprecipitation and immunofluorescence staining assays. The protein expression of epithelial-mescenchymal transition (EMT) and Wnt/ß-catenin signaling pathway was tested by immunofluorescence staining and western blotting assay. The depletion of PHB prevented bladder cancer cell invasiveness and inhibited EMT. Contrarily,the abilities of bladder carcinoma cells migration and invasion in vitro as well as metastasis in vivo were enhanced when the PHB overexpressed unnormally. Importantly, the ß-catenin was identified to be bound by PHB and ß-catenin knockdown reduced the cancer cell migration, invasion and EMT in PHB overexpressing cells. In addition, PHB stabilized ß-catenin by inhibiting its ubiqutin-mediated degradation thus leading to increased Wnt/ß-catenin signaling. These observations indicate that PHB could promote bladder cancer aggressiveness by binding with ß-catenin to prevent the degradation of ß-catenin and the localized invasive bladder cancer patients with PHB overexpression should take more aggressive postsurgical adjuvant anticancer therapies.


Asunto(s)
Carcinoma , Neoplasias de la Vejiga Urinaria , Animales , Ratones , beta Catenina/metabolismo , Vía de Señalización Wnt/genética , Vejiga Urinaria/patología , Transición Epitelial-Mesenquimal/genética , Invasividad Neoplásica/patología , Neoplasias de la Vejiga Urinaria/genética , Carcinoma/genética , Movimiento Celular/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
4.
Oncogene ; 42(19): 1543-1557, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36966254

RESUMEN

LZTFL1 is a tumor suppressor located in chromosomal region 3p21.3 that is deleted frequently and early in various cancer types including the kidney cancer. However, its role in kidney tumorigenesis remains unknown. Here we hypothesized a tumor suppressive function of LZTFL1 in clear cell renal cell carcinoma (ccRCC) and its mechanism of action based on extensive bioinformatics analysis of patients' tumor data and validated it using both gain- and loss-functional studies in kidney tumor cell lines and patient-derive xenograft (PDX) model systems. Our studies indicated that LZTFL1 inhibits kidney tumor cell proliferation by destabilizing AKT through ZNRF1-mediated ubiquitin proteosome pathway and inducing cell cycle arrest at G1. Clinically, we found that LZTFL1 is frequently deleted in ccRCC. Downregulation of LZTFL1 is associated with a poor ccRCC outcome and may be used as prognostic maker. Furthermore, we show that overexpression of LZTFL1 in PDX via lentiviral delivery suppressed PDX growth, suggesting that re-expression of LZTFL1 may be a therapeutic strategy against ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/metabolismo , Ubiquitinas/metabolismo
6.
Mol Ther ; 30(8): 2828-2843, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35524408

RESUMEN

Translational reprogramming is part of the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, which acts to the advantage of cancer growth and development in different stress conditions, but the mechanism of ER stress-related translational reprogramming in colorectal carcinoma (CRC) progression remains unclear. Here, we identified that Krüppel-like factor 16 (KLF16) can promote CRC progression and stress tolerance through translational reprogramming. The expression of KLF16 was upregulated in CRC tissues and associated with poor prognosis for CRC patients. We found that ER stress inducers can recruit KLF16 to the nucleolus and increase its interaction with two essential proteins for nucleolar homeostasis: nucleophosmin1 (NPM1) and fibrillarin (FBL). Moreover, knockdown of KLF16 can dysregulate nucleolar homeostasis in CRC cells. Translation-reporter system and polysome profiling assays further showed that KLF16 can effectively promote cap-independent translation of ATF4, which can enhance ER-phagy and the proliferation of CRC cells. Overall, our study unveils a previously unrecognized role for KLF16 as an ER stress regulator through mediating translational reprogramming to enhance the stress tolerance of CRC cells and provides a potential therapeutic vulnerability.


Asunto(s)
Neoplasias Colorrectales , Factores de Transcripción de Tipo Kruppel , Respuesta de Proteína Desplegada , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Estrés del Retículo Endoplásmico/genética , Homeostasis , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
7.
Oncogene ; 40(40): 5925-5937, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34363021

RESUMEN

Low levels of ITLN1 have been correlated with obesity-related colorectal carcinogenesis, however, the specific functions and underlying mechanisms remain unclear. Thus, we sought to explore the inhibitory role of ITLN1 in the tumor-permissive microenvironment that exists during the first occurrence and subsequent development of colorectal carcinoma (CRC). Results indicated that ITLN1 was frequently lost in CRC tissues and ITLN1 to be an independent prognostic predictor of CRC. Orthotopic and subcutaneous tumor xenograft approaches were then used to further confirm the protective role of ITLN1 during tumor progression. Increased ITLN1 expression in CRC cells significantly inhibited local pre-existing vessels sprouting, EPC recruitment and the infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) into tumor tissues without affecting the behavior of CRC cells in vitro. Comparatively, ITLN1-derived MDSCs had a lower suppressive effect on T cell proliferation, NOS2 expression, and ROS production. In addition, ITLN1 overexpression markedly suppressed bone marrow (BM)-derived hematopoietic progenitor cells (HPC) differentiation into MDSCs as well as NOS2 activity on MDSCs. Using H-2b+YFP + chimerism through bone marrow transplantation, increased ITLN1 in HCT116 significantly reduced the BM-derived EPCs and MDSCs in vivo mobilization. Mechanistically, results indicated ITLN1 inhibited tumor-derived IL-17D and CXCL2 (MIP2) through the KEAP1/Nrf2/ROS/IL-17D and p65 NF-ĸB/CXCL2 signaling cascades dependent on PI3K/AKT/GSK3ß. This effect was reversed by the PI3K selective inhibitor LY294002. Collectively, ITLN1 synergistically suppressed IL-17D and CXCL2-mediated tumor vascularization, bone marrow derived EPC recruitment, as well as MDSCs generation and trafficking. Thus, ITLN1 potentially serves as a critical prognostic and therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Citocinas/metabolismo , Proteínas Ligadas a GPI/metabolismo , Lectinas/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Animales , Neoplasias Colorrectales/patología , Humanos , Ratones , Neovascularización Patológica
13.
Mol Cancer ; 19(1): 60, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188489

RESUMEN

BACKGROUND: Metastasis causes the vast majority of colorectal carcinoma (CRC)-related deaths. However, little is known about the specific traits and underlying mechanisms of metastasis-initiating cells in primary CRC. And whether or not circular RNAs (circRNAs) take part in this particular event remain not adequately stated yet. METHODS: A screening method based on Transwell assay was first applied to build CRC subgroups with different metastatic potential. High throughput RNA sequencing was used to find out novel metastatic drivers in CRC metastasis-initiating step. A series of in vitro and in vivo assays were further applied to elucidate the functions and underlying molecular mechanisms of circRNAs in CRC metastasis. RESULTS: A circRNA consisting of exon 8-11 of LONP2, termed as circLONP2, was upregulated in metastasis-initiating CRC subgroups. Aberrant higher expression of circLONP2 was observed in primary CRC tissues with established metastasis, and along the invasive margin in metastatic site. High expression of circLONP2 predicted unfavorable overall survival. Functional studies revealed that circLONP2 could enhance the invasiveness of CRC cells in vitro, and targeting circLONP2 through anti-sense oligonucleotide (ASO) dramatically reduced the penetrance of metastasis to foreign organs in vivo. Mechanically, circLONP2 directly interacted with and promoted the processing of primary microRNA-17 (pri-miR-17), through recruiting DiGeorge syndrome critical region gene 8 (DGCR8) and Drosha complex in DDX1-dependent manner. Meanwhile, upregulated mature miR-17-5p could be assembled into exosomes and internalized by neighboring cells to enhance their aggressiveness. CONCLUSIONS: Our data indicate that circLONP2 acts as key metastasis-initiating molecule during CRC progression through modulating the intracellular maturation and intercellular transfer of miR-17, resulting in dissemination of metastasis-initiating ability in primary site and acceleration of metastasis formation in foreign organs. circLONP2 could serve as an effective prognostic predictor and/or novel anti-metastasis therapeutic target in CRC treatment.


Asunto(s)
Neoplasias Colorrectales/patología , ARN Helicasas DEAD-box/metabolismo , Exosomas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/secundario , MicroARNs/genética , ARN Circular/genética , Proteasas ATP-Dependientes/genética , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , ARN Helicasas DEAD-box/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Desnudos , Invasividad Neoplásica , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Theranostics ; 9(7): 1965-1979, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31037150

RESUMEN

Rationale: The incidence of hepatocellular carcinoma is rising worldwide. It is predicted that nearly half of the early-stage hepatocellular carcinoma (E-HCC) patients will develop recurrence. Dysregulated pH, a hallmark of E-HCC, is correlated with poor prognosis. The acidic microenvironment has been shown to promote the release of exosomes, the membrane vesicles recognized as intercellular communicators associated with tumor progression, recurrence, and metastasis. We, therefore, aimed to identify exosomes induced by acidic microenvironment that may regulate E-HCC progression and to explore their mechanisms and clinical significance in E-HCCs. Methods: miRNA microarray analysis and LASSO logistic statistic model were used to identify the main functional exosomal miRNAs. Invasion and scratch assays were performed to examine the migration and invasion of HCC cells. Immunoblotting and immunofluorescence were employed to detect the epithelial-to-mesenchymal transition (EMT) in HCC cells. Chromatin immunoprecipitation (ChIP) was used to analyze the binding of HIF-1α and HIF-2α to promoter regions of miR-21 and miR-10b. Results: The acidic microenvironment in HCC was correlated with poor prognosis of patients. Exosomes from HCC cells cultured in the acidic medium could promote cell proliferation, migration, and invasion of recipient HCC cells. We identified miR-21 and miR-10b as the most important functional miRNAs in acidic HCC-derived exosomes. Also, the acidic microenvironment triggered the activation of HIF-1α and HIF-2α and stimulated exosomal miR-21 and miR-10b expression substantially promoting HCC cell proliferation, migration, and invasion both in vivo and in vitro. In E-HCC patients, serum exosomal miR-21 and miR-10b levels were associated with advanced tumor stage and HIF-1α and HIF-2α expression and were independent prognostic factors for disease-free survival of E-HCC patients. Most importantly, we developed a nano-drug to target exosomal miR-21 and/or miR-10b and examined its therapeutic effects against HCC in vivo. Conclusion: Our findings suggested that the exosomal miR-21 and miR-10b induced by acidic microenvironment in HCC promote cancer cell proliferation and metastasis and may serve as prognostic molecular markers and therapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Proliferación Celular/genética , Exosomas/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , Metástasis de la Neoplasia/genética , Microambiente Tumoral/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia/patología , Recurrencia Local de Neoplasia/genética , Transducción de Señal/genética , Activación Transcripcional/genética , Regulación hacia Arriba/genética
15.
J Cell Biochem ; 120(2): 1386-1397, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30450651

RESUMEN

Endocrine therapy is one of the main treatments for estrogen receptor-positive breast cancers. Tamoxifen is the most commonly used drug for endocrine therapy. However, primary or acquired tamoxifen resistance occurs in a large proportion of breast cancer patients, leading to therapeutic failure. We found that the combination of tamoxifen and ACT001, a nuclear factor-κB (NF-κB) signaling pathway inhibitor, effectively inhibited the proliferation of both tamoxifen-sensitive and tamoxifen-resistant cells. The tamoxifen-resistant cell line MCF7R/LCC9 showed active NF-κB signaling and high apoptosis-related gene transcription, especially for antiapoptotic genes, which could be diminished by treatment with ACT001. These results demonstrate that ACT001 can prevent and reverse tamoxifen resistance by inhibiting NF-κB activation.

16.
J Clin Invest ; 129(2): 727-743, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30511962

RESUMEN

The adenomatous polyposis coli (APC) gene plays a pivotal role in the pathogenesis of colorectal carcinoma (CRC) but remains a challenge for drug development. Long noncoding RNAs (lncRNAs) are invaluable in identifying cancer pathologies and providing therapeutic options for patients with cancer. Here, we identified a lncRNA (lncRNA-APC1) activated by APC through lncRNA microarray screening and examined its expression in a large cohort of CRC tissues. A decrease in lncRNA-APC1 expression was positively associated with lymph node and/or distant metastasis, a more advanced clinical stage, as well as a poor prognosis for patients with CRC. Additionally, APC could enhance lncRNA-APC1 expression by suppressing the enrichment of PPARα on the lncRNA-APC1 promoter. Furthermore, enforced lncRNA-APC1 expression was sufficient to inhibit CRC cell growth, metastasis, and tumor angiogenesis by suppressing exosome production through the direct binding of Rab5b mRNA and a reduction of its stability. Importantly, exosomes derived from lncRNA-APC1-silenced CRC cells promoted angiogenesis by activating the MAPK pathway in endothelial cells, and, moreover, exosomal Wnt1 largely enhanced CRC cell proliferation and migration through noncanonicial Wnt signaling. Collectively, lncRNA-APC1 is a critical lncRNA regulated by APC in the pathogenesis of CRC. Our findings suggest that an APC-regulated lncRNA-APC1 program is an exploitable therapeutic approach for the treatment of patients with CRC.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon , Neoplasias Colorrectales , Exosomas , Sistema de Señalización de MAP Quinasas , ARN Largo no Codificante , ARN Neoplásico , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Exosomas/genética , Exosomas/metabolismo , Exosomas/patología , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Ratones , Ratones Desnudos , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
17.
Cancer Res ; 78(20): 5848-5862, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30143523

RESUMEN

Shortening of the 3' untranslated regions (3'UTR) of mRNA is an important mechanism for oncogene activation. However, 3'UTR alteration events, their pathologic functions, and underlying mechanisms in human urothelial carcinoma of the bladder (UCB) are not clear. Here, we combine RNA sequencing, bioinformatics, and clinical studies in two independent cohorts of patients with UCB to identify a novel RAC1 shorter 3'UTR isoform that is frequently expressed in UCB and is critical in the tumorigenesis and acquisition of a poor prognostic phenotype in patients. Short 3'UTR isoform of RAC1 substantially upregulated RAC1 expression by escaping from miRNA-targeted repression and played an essential oncogenic role in UCB pathogenesis. An important cleavage/polyadenylation factor, cleavage stimulation factor 2 (CSTF2), induced 3'UTR shortening of RAC1 in UCB by mediating slow transcriptional elongation at RAC1 Cotranscriptional recruitment of CSTF2 on the GUAAU motif at proximal polyadenylation site of RAC1 attenuated the recruitment of two transcription factors AFF1 and AFF4, causing the defects in elongation. CSTF2 regulated the tumorigenic functions of the shorter RAC1 isoform in UCB cells, enhancing cell proliferation, migration, and invasion. The combination of high expression of CSTF2 and high usage of RAC1 short-3'UTR isoform may be used as a powerful biomarker to predict poor prognosis in UCB. Our findings also suggest a CSTF2-regulated RAC1-3'UTR shortening program as an exploitable therapeutic strategy for patients with UCB.Significance: These findings demonstrate that the short isoform of RAC1 is critical in UCB tumorigenesis and may have implications for developing new therapeutic strategies to treat this disease. Cancer Res; 78(20); 5848-62. ©2018 AACR.


Asunto(s)
Regiones no Traducidas 3' , Carcinoma/metabolismo , Proteínas de Unión al ARN/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Urotelio/patología , Proteína de Unión al GTP rac1/genética , Secuencias de Aminoácidos , Animales , Carcinoma/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Factor de Estimulación del Desdoblamiento , Biología Computacional , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Trasplante de Neoplasias , Pronóstico , Proteínas de Unión al ARN/genética , Análisis de Secuencia de ARN , Resultado del Tratamiento , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genética , Cicatrización de Heridas
18.
Oncogene ; 37(48): 6243-6258, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30013189

RESUMEN

It has been suggested that formin-like protein 1 (FMNL1) plays an important role in the pathogenic process of several hematopoietic malignancies. In this study, we performed a series of in vivo and in vitro assays to elucidate the biological functions of FMNL1 and underlying mechanisms in human nasopharyngeal carcinoma (NPC) pathogenesis. Herein, we report that high expression of FMNL1 in NPC is positively associated with an aggressive disease and/or poor patient survival. Ectopic overexpression of FMNL1 in NPC cells substantially promoted cell invadopodia formation, epithelial-mesenchymal transition (EMT) and invasiveness, whereas depletion of FMNL1 potently suppressed NPC cells invadopodia formation, EMT, and invasive/metastatic capacities. We further show that FMNL1 could enhance NPC cell aggressiveness by increasing a key downstream target, the metastasis-associated protein 1 (MTA1) gene. Importantly, ectopic overexpression of FMNL1 in NPC cells markedly improved the binding of HDAC1 with Profilin2 in the cytoplasm and suppressed the enrichment of HDAC1 on the promoter of MTA1 and thereby, leading to an increased MTA1 transcription and expression. Furthermore, in addition to the amplification of FMNL1 gene, decreased level of miR-16 in NPCs is another critical mechanism to upregulate FMNL1 expression. These results, collectively, provide first-line of evidences that high expression of FMNL1, resulted from decreased miR-16 and/or MTA1 amplification, has a potent oncogenic role to drive the development and aggressive process of NPC by upregulating MTA1, and FMNL1 might be employed as a new prognostic biomarker and therapeutic target for human NPC.


Asunto(s)
Proteínas del Citoesqueleto/genética , Epigénesis Genética/genética , Histona Desacetilasas/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Proteínas Represoras/genética , Regulación hacia Arriba/genética , Animales , Línea Celular Tumoral , Citoplasma/genética , Transición Epitelial-Mesenquimal/genética , Forminas , Regulación Neoplásica de la Expresión Génica/genética , Histona Desacetilasa 1/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones SCID , MicroARNs/genética , Invasividad Neoplásica/genética , Profilinas/genética , Regiones Promotoras Genéticas/genética , Transactivadores
19.
Cancer Lett ; 414: 71-80, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126912

RESUMEN

AGBL2 has been reported to catalyze α-tubulin detyrosination, by which it promotes tumorigenesis and cancer progression. However, its potential role in the pathogenesis of hepatocellular carcinoma (HCC) has not been revealed yet. In the present study, AGBL2 was frequently found being overexpressed in HCC tissues and cell lines. In a large cohort of clinical HCC tissues, high expression of AGBL2 was positively associated with tumor size, tumor multiplicity and advanced clinical stage (p < 0.05), and it was an independent prognostic factor for HCC patients. In HCC cell lines, ectopic overexpression of AGBL2 substantially enhanced HCC cells survival and proliferation in vitro and promoted tumor growth in vivo. In addition, we demonstrated that overexpression of AGBL2 in HCC cells notably inhibited apoptosis by enhancing IRGM-regulated autophagy. Meanwhile, AGBL2 could up-regulate the expression of TPX2 and Aurora A activity to promote cell proliferation in HCC cells. In summary, our findings suggest that up-regulation of AGBL2 plays a critical oncogenic role in the pathogenesis of HCC through modulation on autophagy and Aurora A activity, and it could be a candidate for prognostic marker and therapeutic target in HCC.


Asunto(s)
Aurora Quinasa A/genética , Autofagia/genética , Carboxipeptidasas/genética , Carcinoma Hepatocelular/genética , Proliferación Celular/genética , Proteínas de Unión al GTP/genética , Neoplasias Hepáticas/genética , Animales , Aurora Quinasa A/metabolismo , Carboxipeptidasas/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Femenino , Proteínas de Unión al GTP/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Interferencia de ARN , Tratamiento con ARN de Interferencia , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
20.
Neurotherapeutics ; 15(1): 216-232, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247448

RESUMEN

This study aimed to investigate the effects of targeted temperature management (TTM) modulation on traumatic brain injury (TBI) and the involved mechanisms using quantitative proteomics technology. SH-SY5Y and HT-22 cells were subjected to moderate stretch injury using the cell injury controller (CIC), followed by incubation at TTM (mild hypothermia, 32°C), or normothermia (37°C). The real-time morphological changes, cell cycle phase distribution, death, and cell viability were evaluated. Moderate TBI was produced by the controlled cortical impactor (CCI), and the effects of TTM on the neurological damage, neurodegeneration, cerebrovascular histopathology, and behavioral outcome were determined in vivo. Results showed that TTM treatment prevented TBI-induced neuronal necrosis in the brain, achieved a substantial reduction in neuronal death both in vitro and in vivo, reduced cortical lesion volume and neuronal loss, attenuated cerebrovascular histopathological damage, brain edema, and improved behavioral outcome. Using an iTRAQ proteomics approach, proteins that were significantly associated with TTM in experimental TBI were identified. Importantly, changes in four candidate molecules (plasminogen [PLG], antithrombin III [AT III], fibrinogen gamma chain [FGG], transthyretin [TTR]) were verified using TBI rat brain tissues and TBI human cerebrospinal fluid (CSF) samples. This study is one of the first to investigate the neuroprotective effects of TTM on the proteome of human and experimental models of TBI, providing an overall landscape of the TBI brain proteome and a scientific foundation for further assessment of candidate molecules associated with TTM for the promotion of reparative strategies post-TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/terapia , Hipotermia Inducida/métodos , Proteómica , Animales , Lesiones Traumáticas del Encéfalo/patología , Ciclo Celular , Línea Celular Tumoral , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/patología , Frío , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Aprendizaje por Laberinto , Ratones , Necrosis , Neuronas/metabolismo , Neuronas/patología , Estimulación Física , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...