Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Heliyon ; 10(9): e30630, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765146

RESUMEN

Exosomes are extracellular vesicles comprising bilayer phospholipid membranes and are secreted by eukaryotic cells. They are released via cellular exocytosis, contain DNA, RNA, proteins, and other substances, and participate in various cellular communications between tissues and organs. Since the discovery of exosomes in 1983, animal-derived exosomes have become a research focus for small-molecule drug delivery in biology, medicine, and other fields owing to their good biocompatibility and homing effects. Recent studies have found that plant-derived exosome-like nanovesicles (PELNVs) exhibit certain biological effects, such as anti-inflammatory and anti-tumor abilities, and have minimal toxic side effects. Because they are rich in active lipid molecules with certain pharmacological effects, PELNVs could be novel carriers for drug delivery. In this review, the biological formation and effects, isolation, and extraction of PELNVs, as well as characteristics of transporting drugs as carriers are summarized to provide new ideas and methods for future research on plant-derived exosome-like nanovesicles.

2.
Aging Dis ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739944

RESUMEN

Targeting adverse pathogenic gut microbiota regulation through fecal microbiota transplantation (FMT) may restore health and has been validated in some aging-related diseases. However, the mechanisms of the gut microbiota's role in frailty and whether modulation of the gut microbiota can treat age-related frailty remain largely unknown. To assess the effects of FMT on frailty, we used bidirectional fecal microbiota transplantation in young and old mice. We demonstrated that fecal bacteria transplanted from old mice into young mice reduced body weight and grip strength (p=0.002), and led to elevated inflammatory factors in young mice, but had no significant effect on intestinal barrier function. Notably, FMT treatment in older mice not only improved frailty (grip strength: p=0.036, low physical activity: p=0.020, running speed: p=0.048, running time: p=0.058, frailty score: p=0.027) and muscle mass, but also improved intestinal ecological imbalances, intestinal barrier function, and systemic inflammation (serum TNF-α: p=0.002, and IL-6: p<0.001). KEGG enrichment analysis of fecal metabolites showed that FMT may ameliorate frailty through the sphingolipid metabolism pathway. In addition, aged mice given FMT treatment showed a significant increase in the abundance of SCFA-producing bacteria and increased levels of short-chain fatty acids (butyric acid: p=0.084, propionic acid: p=0.028). Subsequent further verification found that FMT ameliorating frailty may be achieved through SCFAs metabolism. Another mechanism study found that FMT reduces lipopolysaccharide levels (p<0.001), thereby inhibiting the TLR4/NF-κB signaling pathway and its downstream pro-inflammatory products. Therefore, regulating SCFAs metabolism by altering gut microbial composition and targeting the gut-muscle axis with LPS/TLR4 pathways may be potential strategies to treat frailty in older adults.

3.
Tissue Eng Regen Med ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652220

RESUMEN

BACKGROUND: Carbonic anhydrase 1 (CA1) has been found to be involved in osteogenesis and osteoclast in various human diseases, but the molecular mechanisms are not completely understood. In this study, we aim to use siRNA and lentivirus to reduce or increase the expression of CA1 in Dental follicle stem cells (DFSCs), in order to further elucidate the role and mechanism of CA1 in osteogenesis, and provide better osteogenic growth factors and stem cell selection for the application of bone tissue engineering in alveolar bone fracture transplantation. METHODS: The study used RNA interference and lentiviral vectors to manipulate the expression of the CA1 gene in DFSCs during in vitro osteogenic induction. The expression of osteogenic marker genes was evaluated and changes in CA1, alkaline phosphatase (ALP), Runt-related transcription factor 2 (RUNX2), and Bone morphogenetic proteins (BMP2) were measured using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB). The osteogenic effect was assessed through Alizarin Red staining. RESULTS: The mRNA and protein expression levels of CA1, ALP, RUNX2, and BMP2 decreased distinctly in the si-CA1 group than other groups (p < 0.05). In the Lentivirus-CA1 (LV-CA1) group, the mRNA and protein expressions of CA1, ALP, RUNX2, and BMP2 were amplified to varying degrees than other groups (p < 0.05). Apart from CA1, BMP2 (43.01%) and ALP (36.69%) showed significant upregulation (p < 0.05). Alizarin red staining indicated that the LV-CA1 group produced more calcified nodules than other groups, with a higher optical density (p < 0.05), and the osteogenic effect was superior. CONCLUSIONS: CA1 can impact osteogenic differentiation via BMP related signaling pathways, positioning itself upstream in osteogenic signaling pathways, and closely linked to osteoblast calcification and ossification processes.

4.
Int Immunopharmacol ; 133: 112150, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669949

RESUMEN

Extracellular vesicles (EVs), which have a lipid nano-sized structure, are known to contain the active components of parental cells and play a crucial role in intercellular communication. The progression and metastasis of tumors are influenced by EVs derived from immune cells, which can simultaneously stimulate and suppress immune responses. In the past few decades, there has been a considerable focus on EVs due to their potential in various areas such as the development of vaccines, delivering drugs, making engineered modifications, and serving as biomarkers for diagnosis and prognosis. This review focuses on the substance information present in EVs derived from innate and adaptive immune cells, their effects on the immune system, and their applications in cancer treatment. While there are still challenges to overcome, it is important to explore the composition of immune cells released vesicles and their potential therapeutic role in tumor therapy. The review also highlights the current limitations and future prospects in utilizing EVs for treatment purposes.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Vesículas Extracelulares/inmunología , Animales , Inmunoterapia/métodos , Inmunidad Innata , Inmunidad Adaptativa , Vacunas contra el Cáncer/inmunología
5.
ANZ J Surg ; 94(4): 733-742, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504426

RESUMEN

BACKGROUNDS: The lack of systematic classification and standard treatment principles for knee ankylosis prevents optimal treatments. This study explored treatments for type I (mild) knee joint ankylosis. METHOD: This retrospective study analysed patients with knee joint ankylosis admitted from March 2013 to January 2018 who underwent sequential arthroscopic release. RESULT: The 62 patients had 12-36 (average, 18) months of follow-up. Thirty-eight patients were released; of these, 18 were assisted by limited incision with partial quadriceps femoris expansion myotomy and released according to arthroscopy. Six patients underwent lengthening and release of the quadriceps femoris. All surgeries combined with full-course rehabilitation resulted in improved joint mobility. The range of motion (ROM) of the knee joint recovered to a range of 0° to 85°-140° (mean: 118.32 ± 9.42°) from the preoperative range of 30°-70° (mean: 45° ± 15.50°). The clinical effect was evaluated according to the Judet criteria at the final follow-up. The outcomes at the last follow-up (at least for 1 year) were excellent in 55 cases, good in six cases, and fair in one case. CONCLUSION: Sequential arthroscopic release, minimal selective invasion of limited incision of partial quadriceps femoris expansion myotomy, assisted by pie-crusting technique to release, or quadriceps femoris lengthening, and release surgery for type I knee joint ankylosis, accompanied by early rehabilitation training provided satisfactory results without significant complications.


Asunto(s)
Anquilosis , Articulación de la Rodilla , Humanos , Estudios Retrospectivos , Articulación de la Rodilla/cirugía , Anquilosis/cirugía , Anquilosis/etiología , Resultado del Tratamiento , Artroscopía/efectos adversos , Rango del Movimiento Articular
6.
NPJ Biofilms Microbiomes ; 10(1): 25, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509085

RESUMEN

Hyperuricemia (HUA) is a metabolic syndrome caused by abnormal purine metabolism. Although recent studies have noted a relationship between the gut microbiota and gout, whether the microbiota could ameliorate HUA-associated systemic purine metabolism remains unclear. In this study, we constructed a novel model of HUA in geese and investigated the mechanism by which Lactobacillus rhamnosus GG (LGG) could have beneficial effects on HUA. The administration of antibiotics and fecal microbiota transplantation (FMT) experiments were used in this HUA goose model. The effects of LGG and its metabolites on HUA were evaluated in vivo and in vitro. Heterogeneous expression and gene knockout of LGG revealed the mechanism of LGG. Multi-omics analysis revealed that the Lactobacillus genus is associated with changes in purine metabolism in HUA. This study showed that LGG and its metabolites could alleviate HUA through the gut-liver-kidney axis. Whole-genome analysis, heterogeneous expression, and gene knockout of LGG enzymes ABC-type multidrug transport system (ABCT), inosine-uridine nucleoside N-ribohydrolase (iunH), and xanthine permease (pbuX) demonstrated the function of nucleoside degradation in LGG. Multi-omics and a correlation analysis in HUA patients and this goose model revealed that a serum proline deficiency, as well as changes in Collinsella and Lactobacillus, may be associated with the occurrence of HUA. Our findings demonstrated the potential of a goose model of diet-induced HUA, and LGG and proline could be promising therapies for HUA.


Asunto(s)
Hiperuricemia , Lacticaseibacillus rhamnosus , Humanos , Hiperuricemia/terapia , Nucleósidos , Lactobacillus , Prolina , Purinas
7.
Clin Transl Oncol ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38504070

RESUMEN

Tumor growth and metastasis require neovascularization, which is dependent on a complex array of factors, such as the production of various pro-angiogenic factors by tumor cells, intercellular signaling, and stromal remodeling. The hypoxic, acidic tumor microenvironment is not only conducive to tumor cell proliferation, but also disrupts the equilibrium of angiogenic factors, leading to vascular heterogeneity, which further promotes tumor development and metastasis. Anti-angiogenic strategies to inhibit tumor angiogenesis has, therefore, become an important focus for anti-tumor therapy. The traditional approach involves the use of anti-angiogenic drugs to inhibit tumor neovascularization by targeting upstream and downstream angiogenesis-related pathways or pro-angiogenic factors, thereby inhibiting tumor growth and metastasis. This review explores the mechanisms involved in tumor angiogenesis and summarizes currently used anti-angiogenic drugs, including monoclonal antibody, and small-molecule inhibitors, as well as the progress and challenges associated with their use in anti-tumor therapy. It also outlines the opportunities and challenges of treating tumors using more advanced anti-angiogenic strategies, such as immunotherapy and nanomaterials.

8.
NPJ Digit Med ; 7(1): 81, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532181

RESUMEN

Although pulmonary vein isolation (PVI) gaps and extrapulmonary vein triggers contribute to recurrence after atrial fibrillation (AF) ablation, their precise mechanisms remain unproven. Our study assessed the impact of PVI gaps on rhythm outcomes using a human AF digital twin. We included 50 patients (76.0% with persistent AF) who underwent catheter ablation with a realistic AF digital twin by integrating computed tomography and electroanatomical mapping. We evaluated the final rhythm status, including AF and atrial tachycardia (AT), across 600 AF episodes, considering factors including PVI level, PVI gap number, and pacing locations. Our findings revealed that antral PVI had a significantly lower ratio of AF at the final rhythm (28% vs. 56%, p = 0.002) than ostial PVI. Increasing PVI gap numbers correlated with an increased ratio of AF at the final rhythm (p < 0.001). Extra-PV induction yielded a higher ratio of AF at the final rhythm than internal PV induction (77.5% vs. 59.0%, p < 0.001). In conclusion, our human AF digital twin model helped assess AF maintenance mechanisms. Clinical trial registration: https://www.clinicaltrials.gov ; Unique identifier: NCT02138695.

9.
World J Gastroenterol ; 30(8): 919-942, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38516243

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common types of tumors. The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies. AIM: To establish an HCC prognostic model for lipid metabolism-related long non-coding RNAs (LMR-lncRNAs) and conduct in-depth research on the specific role of novel LMR-lncRNAs in HCC. METHODS: Correlation and differential expression analyses of The Cancer Genome Atlas data were used to identify differentially expressed LMR-lncRNAs. Quantitative real-time polymerase chain reaction analysis was used to evaluate the expression of LMR-lncRNAs. Nile red staining was employed to observe intracellular lipid levels. The interaction between RP11-817I4.1, miR-3120-3p, and ATP citrate lyase (ACLY) was validated through the performance of dual-luciferase reporter gene and RIP assays. RESULTS: Three LMR-lncRNAs (negative regulator of antiviral response, RNA transmembrane and coiled-coil domain family 1 antisense RNA 1, and RP11-817I4.1) were identified as predictive markers for HCC patients and were utilized in the construction of risk models. Additionally, proliferation, migration, and invasion were reduced by RP11-817I4.1 knockdown. An increase in lipid levels in HCC cells was significantly induced by RP11-817I4.1 through the miR-3120-3p/ACLY axis. CONCLUSION: LMR-lncRNAs have the capacity to predict the clinical characteristics and prognoses of HCC patients, and the discovery of a novel LMR-lncRNAs, RP11-817I4.1, revealed its role in promoting lipid accumulation, thereby accelerating the onset and progression of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Metabolismo de los Lípidos/genética , MicroARNs/genética , MicroARNs/metabolismo , Ácidos Grasos , Lípidos , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Línea Celular Tumoral
10.
Microbiol Spectr ; 12(4): e0339323, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38411057

RESUMEN

Gut microbiota dysbiosis is a prominent determinant that significantly contributes to the disruption of lipid metabolism. Consequently, it is essential to the occurrence and development of non-alcoholic fatty liver disease (NAFLD). Nevertheless, the connection between diet and symbiotic gut microbiota in the progression of NAFLD remains uncertain. The purpose of this study was to explore the role of supplementing commensal Bacteroides fragilis (B. fragilis) on lipid metabolism, gut microbiota, and metabolites in high-fat diet (HFD)-fed mice, elucidating the impact of gut microbiota and metabolites on the development of NAFLD. Our study revealed that supplementation with B. fragilis exacerbated both weight gain and obesity in mice. B. fragilis exacerbated blood glucose levels and liver dysfunction in mice. Furthermore, an increase in liver lipid accumulation and the upregulation of genes correlated with lipid metabolism were observed in mice. Under an HFD, supplementation of commensal B. fragilis resulted in alterations in the gut microbiota, notably a significant increase in Desulfovibrionaceae, which led to elevated endotoxin levels and thereby influenced the progression of NAFLD. It was interesting that the simultaneous examination of gut microbiota metabolites revealed a more pronounced impact of diet on short-chain fatty acids. This study represented the pioneering investigation into the impact of B. fragilis on NAFLD. Our findings demonstrated that B. fragilis induced dysregulation in the intestinal microbiota, leading to elevated levels of lipopolysaccharide and dysfunction in glucose and lipid metabolism, thereby exacerbating NAFLD.IMPORTANCESome intestinal symbiotic microbes are involved in the occurrence of the metabolic disorders. Our study investigated the impact of supplementing commensal Bacteroides fragilis on host metabolism in high-fat diet-fed mice. Research results indicated that adding a specific bacterial strain to the complex intestinal microecology can worsen metabolic conditions. This effect mainly affects the structural diversity of intestinal microorganisms, the increase in harmful bacteria in the gut, and the elevation of endotoxin levels, blood glucose, and lipid metabolism, thereby impacting the progression of non-alcoholic fatty liver disease (NAFLD). Understanding the principles that govern the establishment of microbial communities comprising multiple species is crucial for preventing or repairing dysfunctions in these communities, thereby enhancing host health and facilitating disease treatment. This study demonstrated that gut microbiota dysbiosis could contribute to metabolic dysfunction and provides new insights into how to promote gut microbiota in the prevention and therapy of NAFLD.


Asunto(s)
Infecciones Bacterianas , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/microbiología , Hígado , Bacteroides fragilis , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos , Disbiosis , Glucemia , Bacterias/genética , Endotoxinas/metabolismo , Infecciones Bacterianas/metabolismo
11.
Immun Inflamm Dis ; 12(2): e1202, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38411294

RESUMEN

BACKGROUND: Histiocytic necrotizing lymphadenitis (HNL) is a self-limited inflammatory disease of unknown pathogenesis. A very small fraction of patients with HNL could develop hemophagocytic lymphohistiocytosis (HLH), a hyperinflammatory disorder. These patients are diagnosed as HNL with HLH (HNL-HLH). HNL-HLH in the pediatric population has been systemically studied, however, the clinical, laboratory, and radiological features and outcomes of adult patients with HNL-HLH remain to be explored. We aimed to explore the clinical, laboratory, and radiological features and outcomes of adult patients with HNL-HLH. METHODS: We collected the clinical data of patients with HNL-HLH admitted to the First Affiliated Hospital of Nanjing Medical University from October 2010 to June 2015. All the patients underwent lymph node biopsy and have a pathological diagnosis of HNL. The age, gender, clinical presentation, lymph node signs, laboratory findings and imaging data, and pathological findings of the patients were collected. RESULTS: In this study, we reported five adult patients with HNL-HLH. All five patients showed enlarged lymph nodes and prolonged fever. Laboratory findings were consistent with the diagnosis of HLH. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) showed enlarged lymph nodes with increased FDG uptake and splenic hypermetabolism could be present. All the patients responded well to corticosteroids and had a good prognosis. Two of the five patients were diagnosed with systemic lupus erythematosus during the follow-up. CONCLUSIONS: Our study demonstrated that adult patients with HNL-HLH showed distinct clinical, laboratory, and radiological features. And the prognosis is good and patients could be managed with steroids and supportive care.


Asunto(s)
Linfadenitis Necrotizante Histiocítica , Linfohistiocitosis Hemofagocítica , Adulto , Humanos , Niño , Linfadenitis Necrotizante Histiocítica/complicaciones , Linfadenitis Necrotizante Histiocítica/diagnóstico , Linfadenitis Necrotizante Histiocítica/tratamiento farmacológico , Linfohistiocitosis Hemofagocítica/complicaciones , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/tratamiento farmacológico , Tomografía Computarizada por Tomografía de Emisión de Positrones/efectos adversos , Ganglios Linfáticos , Biopsia/efectos adversos
12.
Mil Med Res ; 11(1): 7, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38254241

RESUMEN

Antimicrobial resistance is a global public health threat, and the World Health Organization (WHO) has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed. The discovery and introduction of novel antibiotics are time-consuming and expensive. According to WHO's report of antibacterial agents in clinical development, only 18 novel antibiotics have been approved since 2014. Therefore, novel antibiotics are critically needed. Artificial intelligence (AI) has been rapidly applied to drug development since its recent technical breakthrough and has dramatically improved the efficiency of the discovery of novel antibiotics. Here, we first summarized recently marketed novel antibiotics, and antibiotic candidates in clinical development. In addition, we systematically reviewed the involvement of AI in antibacterial drug development and utilization, including small molecules, antimicrobial peptides, phage therapy, essential oils, as well as resistance mechanism prediction, and antibiotic stewardship.


Asunto(s)
Antibacterianos , Inteligencia Artificial , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Salud Pública
13.
Ann Hematol ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270644

RESUMEN

To investigate the prognostic impact of serum beta-2 microglobulin (B2M) in adult lymphoma-associated hemophagocytic lymphohistiocytosis (HLH). The clinical and laboratory characteristics of 326 adult patients in a multicenter cohort with lymphoma-associated HLH with available baseline serum B2M levels were retrospectively analyzed. A total of 326 cases were included in this study, and the median serum B2M level was 5.19 mg/L. The optimal cut-off of serum B2M was 8.73 mg/L, and the cases with serum B2M level >8.73 mg/L were older and had a more advanced stage, lower levels of platelets, albumin, and fibrinogen, and higher creatinine level. The serum B2M >8.73 mg/L, creatinine ≥133 µmol/L, fibrinogen ≤1.5 g/L, agranulocytosis (<0.5 × 109/L), severe thrombocytopenia (<50 × 109/L), and high Epstein-Barr virus DNA copy number were found to have independent prognostic values in all patients, and the serum B2M >8.73 mg/L was also an independent prognostic factor in patients with creatinine <133 µmol/L. Finally, a prognostic scoring system was established based on independent prognostic factors of all patients and categorized the patients into three groups with significant prognostic differences. This study confirmed that the serum B2M level can be an independent prognostic factor in lymphoma-associated HLH and established a prognostic scoring system to predict patients' survival.

14.
Chemistry ; 30(10): e202303476, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38065837

RESUMEN

The construction of an all-in-one catalyst, in which the photosensitizer and the transition metal site are close to each other, is important for improving the efficiency of metallaphotoredox catalysis. However, the development of convenient synthetic strategies for the precise construction of an all-in-one catalyst remains a challenging task due to the requirement of precise installation of the catalytic sites. Herein, we have successfully established a facile bottom-up strategy for the direct synthesis of Ni(II)-incorporated covalent organic framework (COF), named LZU-713@Ni, as a versatile all-in-one metallaphotoredox catalyst. LZU-713@Ni showed excellent activity and recyclability in the photoredox/nickel-catalyzed C-O, C-S, and C-P cross-coupling reactions. Notably, this catalyst displayed a better catalytic activity than its homogeneous analogues, physically mixed dual catalyst system, and, especially, LZU-713/Ni which was prepared through post-synthetic modification. The improved catalytic efficiency of LZU-713@Ni should be attributed to the implementation of bottom-up strategy, which incorporated the fixed, ordered, and abundant catalytic sites into its framework. This work sheds new light on the exploration of concise and effective strategies for the construction of multifunctional COF-based photocatalysts.

15.
Chem Rev ; 124(1): 164-209, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38044580

RESUMEN

The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.

16.
Phytochemistry ; 218: 113956, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135206

RESUMEN

Seventeen undescribed sesquiterpene-alkaloid hybrids (liriogerphines E-U, 1-17) were isolated and identified during a further phytochemical investigation on the branches and leaves of Chinese tulip tree (Liriodendron chinense), a rare medicinal and ornamental plant endemic to China. These unique heterodimers are conjugates of germacranolide-type sesquiterpenoids with structurally diverse alkaloids [i.e., aporphine- (1-15), proaporphine- (16), and benzyltetrahydroisoquinoline-type (17)] via the formation of a C-N bond. The previously undescribed structures were elucidated by comprehensive spectroscopic data analyses and electronic circular dichroism calculations. Such a class of sesquiterpene-alkaloid hybrids presumably biosynthesized via an aza-Michael addition is quite rare from terrestrial plants. In particular, the sesquiterpene-benzyltetrahydroisoquinoline hybrid skeleton has never been reported until the present study. All the isolates were evaluated for their cytotoxic effects against a small panel of leukemia cell lines (Raji, Jeko-1, Daudi, Jurkat, MV-4-11 and HL-60), and some of them exhibited considerable activities.


Asunto(s)
Alcaloides , Antineoplásicos , Liriodendron , Sesquiterpenos , Liriodendron/química , Alcaloides/química , Hojas de la Planta/química , Sesquiterpenos/química , Estructura Molecular
17.
Nat Commun ; 14(1): 8025, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049421

RESUMEN

Photochemical glycosylation has attracted considerable attention in carbohydrate chemistry. However, to the best of our knowledge, visible-light-promoted glycosylation via photoactive glycosyl donor has not been reported. In the study, we report a photosensitizer-free visible-light-mediated glycosylation approach using a photoactive 2-glycosyloxy tropone as the donor. This glycosylation reaction proceeds at ambient temperature to give a wide range of O-glycosides or oligosaccharides with yields up to 99%. This method is further applied in the stereoselective preparation of various functional glycosyl phosphates/phosphosaccharides, the construction of N-glycosides/nucleosides, and the late-stage glycosylation of natural products or pharmaceuticals on gram scales, and the iterative synthesis of hexasaccharide. The protocol features uncomplicated conditions, operational simplicity, wide substrate scope (58 examples), excellent compatibility with functional groups, scalability of products (7 examples), and high yields. It provides an efficient glycosylation method for accessing O/N-glycosides and glycans.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38082827

RESUMEN

Digital breast tomosynthesis (DBT) is an advanced three-dimensional screening modality for the early detection of breast cancer. DBT is able to reduce the problem of tissue overlap in standard two-dimensional mammograms, thus improving the sensitivity and specificity of cancer detection. Although DBT can improve diagnostic accuracy, it leads to higher radiation dose to patients compared to two-dimensional mammography. In this paper, we propose a novel radiation dose reduction technique that introduces multi-scale kernels to our original massive-training artificial neural network (MTANN) to reduce radiation dose substantially, while maintaining high image quality in DBT. After training our new MTANN with low-dose (LD) images and the corresponding "teaching" high-dose (HD) images, we can convert new LD images to "virtual" high-dose (VHD) images where noise and artifact in the LD images are significantly reduced. In VHD images, it is critical to preserve subtle structures and tiny patterns such as microcalcifications (MCs) which are essential for breast cancer diagnosis. We developed anatomical MTANN experts including an MC-specific expert with multi-scale kernels, which are combined by gating layers to generate whole VHD images. Our MTANN scheme was able to achieve a 79% dose reduction while preserving details of MCs. Experimental results demonstrated that our method achieved the highest performance among the best-known noise-reduction techniques and state-of-the-art deep-learning techniques.Clinical Relevance- Our method can decrease the dose radiation dose in DBT and maintain the image quality.


Asunto(s)
Neoplasias de la Mama , Calcinosis , Humanos , Femenino , Reducción Gradual de Medicamentos , Mamografía/métodos , Redes Neurales de la Computación , Neoplasias de la Mama/diagnóstico por imagen , Sensibilidad y Especificidad
19.
Heliyon ; 9(10): e20462, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37810862

RESUMEN

Background: Hepatocellular carcinoma (HCC), which is characterized by its high malignancy, generally exhibits poor response to immunotherapy. As part of the tumor microenvironment, basement membranes (BMs) are involved in tumor development and immune activities. Presently, there is no integrated analysis linking the basement membrane with immune checkpoints, especially from the perspective of lncRNA. Methods: Based on transcriptome data from The Cancer Genome Atlas, BMs-related and immune checkpoint-related lncRNAs were identified. By applying univariable Cox regression and Machine learning (LASSO and SVM-RFE algorithm), a 10-lncRNA prognosis signature was constructed. The prognostic significance of this signature was assessed by survival analysis. GSEA, ssGSEA, and drug sensitivity analysis were conducted to investigate potential functional pathways, immune status, and clinical implications of guiding individual treatments in HCC. Finally, the promoting migration effect of LINC01224 was validated via in vitro experiments. Results: The multiple Cox regression, receiver operating characteristic curves, and stratified survival analysis of clinical subgroups exhibited the robust prognostic ability of the lncRNA signature. Results of the GSEA and drug sensitivity analysis revealed significant differences in potential functional pathways and response to drugs between the two risk groups. In addition, the risk level of HCC patients was distinctly correlated with immune cell infiltration status. More importantly, LINC01224 was independently associated with the OS of HCC patients (P < 0.05), suppressing the expression of LINC01224 inhibited the migration of HCC cells. Conclusion: This study developed a reliable signature for the prognosis of HCC based on BM and immune checkpoint related lncRNA, revealing that LINC01224 might be a prognostic biomarker for HCC associated with the progression of HCC.

20.
Phys Med Biol ; 68(19)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37678268

RESUMEN

Objective.In clinical medicine, localization and identification of disease on spinal radiographs are difficult and require a high level of expertise in the radiological discipline and extensive clinical experience. The model based on deep learning acquires certain disease recognition abilities through continuous training, thereby assisting clinical physicians in disease diagnosis. This study aims to develop an object detection network that accurately locates and classifies the abnormal parts in spinal x-ray photographs.Approach.This study proposes a deep learning-based automated multi-disease detection architecture called Abnormality Capture-Faster Region-based Convolutional Neural Network (AC-Faster R-CNN), which develops the feature fusion structure Deformable Convolution Feature Pyramid Network and the abnormality capture structure Abnormality Capture Head. Through the combination of dilated and deformable convolutions, the model better captures the multi-scale information of lesions. To further improve the detection performance, the contrast enhancement algorithm Contrast Limited Adaptive Histogram Equalization is used for image preprocessing.Main results.The proposed model is extensively evaluated on a testing set containing 1007 spine x-ray images and the experimental results show that the AC-Faster R-CNN architecture outperforms the baseline model and other advanced detection architectures. The mean Average Precision at Intersection over Union of 50% are 39.8%, the Precision and Sensitivity at the optimal cutoff point of Precision-Recall curve are 48.6% and 46.3%, respectively, reaching the current state-of-the-art detection level.Significance.AC-Faster R-CNN exhibits high precision and sensitivity in abnormality detection tasks of spinal x-ray images, and effectively locates and identifies abnormal areas. Additionally, this study would provide reference and comparison for the further development of medical automatic detection.


Asunto(s)
Redes Neurales de la Computación , Radiología , Rayos X , Radiografía , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...