Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hepatology ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456794

RESUMEN

BACKGROUND AND AIMS: In obesity, depletion of KCs expressing CRIg (complement receptor of the Ig superfamily) leads to microbial DNA accumulation, which subsequently triggers tissue inflammation and insulin resistance. However, the mechanism underlying obesity-mediated changes in KC complement immune functions is largely unknown. APPROACH AND RESULTS: Using KC-specific deactivated Cas9 transgenic mice treated with guide RNA, we assessed the effects of restoring CRIg or the serine/arginine-rich splicing factor 3 (SRSF3) abundance on KC functions and metabolic phenotypes in obese mice. The impacts of weight loss on KC responses were evaluated in a diet switch mouse model. The role of SRSF3 in regulating KC functions was also evaluated using KC-specific SRSF3 knockout mice. Here, we report that overexpression of CRIg in KCs of obese mice protects against bacterial DNA accumulation in metabolic tissues. Mechanistically, SRSF3 regulates CRIg expression, which is essential for maintaining the CRIg+ KC population. During obesity, SRSF3 expression decreases, but it is restored with weight loss through a diet switch, normalizing CRIg+ KCs. KC SRSF3 is also repressed in obese human livers. Lack of SRSF3 in KCs in lean and obese mice decreases their CRIg+ population, impairing metabolic parameters. During the diet switch, the benefits of weight loss are compromised due to SRSF3 deficiency. Conversely, SRSF3 overexpression in obese mice preserves CRIg+ KCs and improves metabolic responses. CONCLUSIONS: Restoring SRSF3 abundance in KCs offers a strategy against obesity-associated tissue inflammation and insulin resistance by preventing bacterial DNA accumulation.

2.
Front Immunol ; 14: 1216344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520546

RESUMEN

Emerging evidence indicates the critical roles of microbiota in mediating host cardiac functions in ageing, however, the mechanisms underlying the communications between microbiota and cardiac cells during the ageing process have not been fully elucidated. Bacterial DNA was enriched in the cardiomyocytes of both ageing humans and mice. Antibiotic treatment remarkably reduced bacterial DNA abundance in ageing mice. Gut microbial DNA containing extracellular vesicles (mEVs) were readily leaked into the bloodstream and infiltrated into cardiomyocytes in ageing mice, causing cardiac microbial DNA enrichment. Vsig4+ macrophages efficiently block the spread of gut mEVs whereas Vsig4+ cell population was greatly decreased in ageing mice. Gut mEV treatment resulted in cardiac inflammation and a reduction in cardiac contractility in young Vsig4-/- mice. Microbial DNA depletion attenuated the pathogenic effects of gut mEVs. cGAS/STING signaling is critical for the effects of microbial DNA. Restoring Vsig4+ macrophage population in ageing WT mice reduced cardiac microbial DNA abundance and inflammation and improved heart contractility.


Asunto(s)
Envejecimiento , Miocarditis , Humanos , Ratones , Animales , ADN Bacteriano , Macrófagos , Inflamación , Contracción Miocárdica
3.
Front Endocrinol (Lausanne) ; 13: 1037465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36440192

RESUMEN

Aims: Aging is associated with the development of insulin resistance and hypertension which may stem from inflammation induced by accumulation of toxic bacterial DNA crossing the gut barrier. The aim of this study was to identify factors counter-regulating these processes. Taking advantage of the Chromogranin A (CgA) knockout (CgA-KO) mouse as a model for healthy aging, we have identified Vsig4 (V-set and immunoglobulin domain containing 4) as the critical checkpoint gene in offsetting age-associated hypertension and diabetes. Methods and Results: The CgA-KO mice display two opposite aging phenotypes: hypertension but heightened insulin sensitivity at young age, whereas the blood pressure normalizes at older age and insulin sensitivity further improves. In comparison, aging WT mice gradually lost glucose tolerance and insulin sensitivity and developed hypertension. The gut barrier, compromised in aging WT mice, was preserved in CgA KO mice leading to major 35-fold protection against bacterial DNA-induced inflammation. Similarly, RNA sequencing showed increased expression of the Vsig4 gene (which removes bacterial DNA) in the liver of 2-yr-old CgA-KO mice, which may account for the very low accumulation of microbial DNA in the heart. The reversal of hypertension in aging CgA-KO mice likely stems from (i) low accumulation of microbial DNA, (ii) decreased spillover of norepinephrine in the heart and kidneys, and (iii) reduced inflammation. Conclusion: We conclude that healthy aging relies on protection from bacterial DNA and the consequent low inflammation afforded by CgA-KO. Vsig4 also plays a crucial role in "healthy aging" by counteracting age-associated insulin resistance and hypertension.


Asunto(s)
Diabetes Mellitus , Microbioma Gastrointestinal , Hipertensión , Resistencia a la Insulina , Ratones , Animales , Resistencia a la Insulina/genética , ADN Bacteriano , Ratones Noqueados , Hipertensión/genética , ADN , Cromogranina A , Inflamación/genética
4.
Cell Metab ; 34(8): 1201-1213.e5, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35921818

RESUMEN

Hepatocytes have important roles in liver iron homeostasis, abnormalities in which are tightly associated with liver steatosis and fibrosis. Here, we show that non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are characterized by iron-deficient hepatocytes and iron overload in hepatic stellate cells (HSCs). Iron deficiency enhances hepatocyte lipogenesis and insulin resistance through HIF2α-ATF4 signaling. Elevated secretion of iron-containing hepatocyte extracellular vesicles (EVs), which are normally cleared by Kupffer cells, accounts for hepatocyte iron deficiency and HSC iron overload in NAFLD/NASH livers. Iron accumulation results in overproduction of reactive oxygen species that promote HSC fibrogenic activation. Conversely, blocking hepatocyte EV secretion or depleting EV iron cargo restores liver iron homeostasis, concomitant with mitigation of NAFLD/NASH-associated liver steatosis and fibrosis. Taken together, these studies show that iron distribution disorders contribute to the development of liver metabolic diseases.


Asunto(s)
Sobrecarga de Hierro , Enfermedad del Hígado Graso no Alcohólico , Animales , Modelos Animales de Enfermedad , Fibrosis , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Hierro/metabolismo , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología , Macrófagos del Hígado/metabolismo , Lipogénesis , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo
5.
Cell Metab ; 34(7): 978-990.e4, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35700738

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a liver disease associated with significant morbidity. Kupffer cells (KCs) produce endogenous miR-690 and, via exosome secretion, shuttle this miRNA to other liver cells, such as hepatocytes, recruited hepatic macrophages (RHMs), and hepatic stellate cells (HSCs). miR-690 directly inhibits fibrogenesis in HSCs, inflammation in RHMs, and de novo lipogenesis in hepatocytes. When an miR-690 mimic is administered to NASH mice in vivo, all the features of the NASH phenotype are robustly inhibited. During the development of NASH, KCs become miR-690 deficient, and miR-690 levels are markedly lower in mouse and human NASH livers than in controls. KC-specific KO of miR-690 promotes NASH pathogenesis. A primary target of miR-690 is NADK mRNA, and NADK levels are inversely proportional to the cellular miR-690 content. These studies show that KCs play a central role in the etiology of NASH and raise the possibility that miR-690 could emerge as a therapeutic for this condition.


Asunto(s)
Materiales Biomiméticos , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Animales , Materiales Biomiméticos/farmacología , Fibrosis , Macrófagos del Hígado/patología , Macrófagos del Hígado/fisiología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/genética , Cirrosis Hepática/terapia , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/terapia
6.
Acta Physiol (Oxf) ; 235(3): e13827, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35500155

RESUMEN

AIM: Low-grade inflammation is the hallmark of non-alcoholic fatty liver diseases (NAFLD) and non-alcoholic steatohepatitis (NASH). The leakage of microbiota-derived products can contribute to liver inflammation during NAFLD/NASH development. Here, we assessed the roles of gut microbial DNA-containing extracellular vesicles (mEVs) in regulating liver cellular abnormalities in the course of NAFLD/NASH. METHODS: We performed studies with Vsig4-/- , C3-/- , cGAS-/- , and their wild-type littermate mice. Vsig4+ macrophage population and bacterial DNA abundance were examined in both mouse and human liver by either flow cytometric or immunohistochemistry analysis. Gut mEVs were adoptively transferred into Vsig4-/- , C3-/- , cGAS-/- , or littermate WT mice, and hepatocyte inflammation and HSC fibrogenic activation were measured in these mice. RESULTS: Non-alcoholic fatty liver diseases and non-alcoholic steatohepatitis development was concomitant with a diminished liver Vsig4+ macrophage population and a marked bacterial DNA enrichment in both hepatocytes and HSCs. In the absence of Vsig4+ macrophages, gut mEVs translocation led to microbial DNA accumulation in hepatocytes and HSCs, resulting elevated hepatocyte inflammation and HSC fibrogenic activation. In contrast, in lean WT mice, Vsig4+ macrophages remove gut mEVs from bloodstream through a C3-dependent opsonization mechanism and prevent the infiltration of gut mEVs into hepatic cells. Additionally, Vsig4-/- mice more quickly developed significant liver steatosis and fibrosis than WT mice after Western diet feeding. In vitro treatment with NASH mEVs triggered hepatocyte inflammation and HSC fibrogenic activation. Microbial DNAs are key cargo for the effects of gut mEVs by activating cGAS/STING. CONCLUSION: Accumulation of microbial DNAs fuels the development of NAFLD/NASH-associated liver abnormalities.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , ADN Bacteriano , Modelos Animales de Enfermedad , Fibrosis , Hepatocitos/patología , Hepatocitos/fisiología , Inflamación/patología , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Nucleotidiltransferasas
7.
J Am Heart Assoc ; 11(4): e024561, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35112881

RESUMEN

Background Obesity is an established risk factor for hypertension. Although obesity-induced gut barrier breach leads to the leakage of various microbiota-derived products into host circulation and distal organs, the roles of microbiota in mediating the development of obesity-associated adrenomedullary disorders and hypertension have not been elucidated. We seek to explore the impacts of microbial DNA enrichment on inducing obesity-related adrenomedullary abnormalities and hypertension. Methods and Results Obesity was accompanied by remarkable bacterial DNA accumulation and elevated inflammation in the adrenal glands. Gut microbial DNA containing extracellular vesicles (mEVs) were readily leaked into the bloodstream and infiltrated into the adrenal glands in obese mice, causing microbial DNA enrichment. In lean wild-type mice, adrenal macrophages expressed CRIg (complement receptor of the immunoglobulin superfamily) that efficiently blocks the infiltration of gut mEVs. In contrast, the adrenal CRIg+ cell population was greatly decreased in obese mice. In lean CRIg-/- or C3-/- (complement component 3) mice intravenously injected with gut mEVs, adrenal microbial DNA accumulation elevated adrenal inflammation and norepinephrine secretion, concomitant with hypertension. In addition, microbial DNA promoted inflammatory responses and norepinephrine production in rat pheochromocytoma PC12 cells treated with gut mEVs. Depletion of microbial DNA cargo markedly blunted the effects of gut mEVs. We also validated that activation of cGAS (cyclic GMP-AMP synthase)/STING (cyclic GMP-AMP receptor stimulator of interferon genes) signaling is required for the ability of microbial DNA to trigger adrenomedullary dysfunctions in both in vivo and in vitro experiments. Restoring CRIg+ cells in obese mice decreased microbial DNA abundance, inflammation, and hypertension. Conclusions The leakage of gut mEVs leads to adrenal enrichment of microbial DNA that are pathogenic to induce obesity-associated adrenomedullary abnormalities and hypertension. Recovering the CRIg+ macrophage population attenuates obesity-induced adrenomedullary disorders.


Asunto(s)
Hipertensión , Inflamación , Animales , Catecolaminas , ADN Bacteriano , Inflamación/genética , Ratones , Ratones Obesos , Norepinefrina , Obesidad/complicaciones , Obesidad/genética
8.
Nat Commun ; 13(1): 565, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091566

RESUMEN

Various microbial products leaked from gut lumen exacerbate tissue inflammation and metabolic disorders in obesity. Vsig4+ macrophages are key players preventing infiltration of bacteria and their products into host tissues. However, roles of islet Vsig4+ macrophages in the communication between microbiota and ß cells in pathogenesis of obesity-associated islet abnormalities are unknown. Here, we find that bacterial DNAs are enriched in ß cells of individuals with obesity. Intestinal microbial DNA-containing extracellular vesicles (mEVs) readily pass through obese gut barrier and deliver microbial DNAs into ß cells, resulting in elevated inflammation and impaired insulin secretion by triggering cGAS/STING activation. Vsig4+ macrophages prevent mEV infiltration into ß cells through a C3-dependent opsonization, whereas loss of Vsig4 leads to microbial DNA enrichment in ß cells after mEV treatment. Removal of microbial DNAs blunts mEV effects. Loss of Vsig4+ macrophages leads to microbial DNA accumulation in ß cells and subsequently obesity-associated islet abnormalities.


Asunto(s)
ADN Bacteriano/metabolismo , Inflamación/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Obesidad/metabolismo , Animales , ADN Bacteriano/sangre , ADN Bacteriano/genética , Dieta Alta en Grasa/efectos adversos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal/genética , Humanos , Inflamación/etiología , Inflamación/genética , Secreción de Insulina , Islotes Pancreáticos/patología , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Obesidad/genética , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Transducción de Señal/genética
9.
Nat Metab ; 3(9): 1163-1174, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34489604

RESUMEN

In chronic obesity, hepatocytes become insulin resistant and exert important effects on systemic metabolism. Here we show that in early onset obesity (4 weeks high-fat diet), hepatocytes secrete exosomes that enhance insulin sensitivity both in vitro and in vivo. These beneficial effects were due to exosomal microRNA miR-3075, which is enriched in these hepatocyte exosomes. FA2H is a direct target of miR-3075 and small interfering RNA depletion of FA2H in adipocytes, myocytes and primary hepatocytes leads to increased insulin sensitivity. In chronic obesity (16-18 weeks of a high-fat diet), hepatocyte exosomes promote a state of insulin resistance. These chronic obese hepatocyte exosomes do not directly cause impaired insulin signalling in vitro but do promote proinflammatory activation of macrophages. Taken together, these studies show that in early onset obesity, hepatocytes produce exosomes that express high levels of the insulin-sensitizing miR-3075. In chronic obesity, this compensatory effect is lost and hepatocyte-derived exosomes from chronic obese mice promote insulin resistance.


Asunto(s)
Exosomas/metabolismo , Hepatocitos/metabolismo , Resistencia a la Insulina/genética , Obesidad/metabolismo , Adipocitos/metabolismo , Animales , Dieta Alta en Grasa , Macrófagos/metabolismo , Ratones , Células Musculares/metabolismo , ARN Interferente Pequeño/genética
10.
Cells ; 10(9)2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34572101

RESUMEN

Obesity induces an adaptive expansion of ß cell mass and insulin secretion abnormality. Expansion of adipose tissue macrophages (ATMs) is a hallmark of obesity. Here, we assessed a novel role of ATMs in mediating obesity-induced ß cell adaptation through the release of miRNA-containing extracellular vesicles (EVs). In both in vivo and in vitro experiments, we show that ATM EVs derived from obese mice notably suppress insulin secretion and enhance ß cell proliferation. We also observed similar phenotypes from human islets after obese ATM EV treatment. Importantly, depletion of miRNAs blunts the effects of obese ATM EVs, as evidenced by minimal effects of obese DicerKO ATM EVs on ß cell responses. miR-155 is a highly enriched miRNA within obese ATM EVs and miR-155 overexpressed in ß cells impairs insulin secretion and enhances ß cell proliferation. In contrast, knockout of miR-155 attenuates the regulation of obese ATM EVs on ß cell responses. We further demonstrate that the miR-155-Mafb axis plays a critical role in controlling ß cell responses. These studies show a novel mechanism by which ATM-derived EVs act as endocrine vehicles delivering miRNAs and subsequently mediating obesity-associated ß cell adaptation and dysfunction.


Asunto(s)
Adaptación Fisiológica , Tejido Adiposo/patología , Vesículas Extracelulares/patología , Células Secretoras de Insulina/patología , Macrófagos/patología , MicroARNs/genética , Obesidad/fisiopatología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Proliferación Celular , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Glucosa/farmacología , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Edulcorantes/farmacología
11.
Cell Metab ; 33(4): 781-790.e5, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33450179

RESUMEN

Insulin resistance is a major pathophysiologic defect in type 2 diabetes and obesity, while anti-inflammatory M2-like macrophages are important in maintaining normal metabolic homeostasis. Here, we show that M2 polarized bone marrow-derived macrophages (BMDMs) secrete miRNA-containing exosomes (Exos), which improve glucose tolerance and insulin sensitivity when given to obese mice. Depletion of their miRNA cargo blocks the ability of M2 BMDM Exos to enhance insulin sensitivity. We found that miR-690 is highly expressed in M2 BMDM Exos and functions as an insulin sensitizer both in vivo and in vitro. Expressing an miR-690 mimic in miRNA-depleted BMDMs generates Exos that recapitulate the effects of M2 BMDM Exos on metabolic phenotypes. Nadk is a bona fide target mRNA of miR-690, and Nadk plays a role in modulating macrophage inflammation and insulin signaling. Taken together, these data suggest miR-690 could be a new therapeutic insulin-sensitizing agent for metabolic disease.


Asunto(s)
Exosomas/metabolismo , Macrófagos/metabolismo , MicroARNs/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Animales , Antagomirs/metabolismo , ARN Helicasas DEAD-box/deficiencia , ARN Helicasas DEAD-box/genética , Dieta Alta en Grasa , Hepatocitos/citología , Hepatocitos/metabolismo , Insulina/metabolismo , Resistencia a la Insulina , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Obesidad/metabolismo , Obesidad/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/deficiencia , Ribonucleasa III/genética
12.
Gastroenterology ; 160(3): 863-874, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33152356

RESUMEN

BACKGROUND & AIMS: Liver CRIg+ (complement receptor of the immunoglobulin superfamily) macrophages play a critical role in filtering bacteria and their products from circulation. Translocation of microbiota-derived products from an impaired gut barrier contributes to the development of obesity-associated tissue inflammation and insulin resistance. However, the critical role of CRIg+ macrophages in clearing microbiota-derived products from the bloodstream in the context of obesity is largely unknown. METHODS: We performed studies with CRIg-/-, C3-/-, cGAS-/-, and their wild-type littermate mice. The CRIg+ macrophage population and bacterial DNA abundance were examined in both mouse and human liver by either flow cytometric or immunohistochemistry analysis. Gut microbial DNA-containing extracellular vesicles (mEVs) were adoptively transferred into CRIg-/-, C3-/-, or wild-type mice, and tissue inflammation and insulin sensitivity were measured in these mice. After coculture with gut mEVs, cellular insulin responses and cGAS/STING-mediated inflammatory responses were evaluated. RESULTS: Gut mEVs can reach metabolic tissues in obesity. Liver CRIg+ macrophages efficiently clear mEVs from the bloodstream through a C3-dependent opsonization mechanism, whereas obesity elicits a marked reduction in the CRIg+ macrophage population. Depletion of CRIg+ cells results in the spread of mEVs into distant metabolic tissues, subsequently exacerbating tissue inflammation and metabolic disorders. Additionally, in vitro treatment of obese mEVs directly triggers inflammation and insulin resistance of insulin target cells. Depletion of microbial DNA blunts the pathogenic effects of intestinal EVs. Furthermore, the cGAS/STING pathway is crucial for microbial DNA-mediated inflammatory responses. CONCLUSIONS: Deficiency of CRIg+ macrophages and leakage of intestinal EVs containing microbial DNA contribute to the development of obesity-associated tissue inflammation and metabolic diseases.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Hepatitis/inmunología , Resistencia a la Insulina/inmunología , Macrófagos del Hígado/inmunología , Obesidad/complicaciones , Animales , Complemento C3/genética , ADN Bacteriano/inmunología , ADN Bacteriano/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal/genética , Hepatitis/microbiología , Hepatitis/patología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Macrófagos del Hígado/metabolismo , Hígado/citología , Hígado/inmunología , Hígado/patología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Nucleotidiltransferasas/metabolismo , Obesidad/sangre , Obesidad/inmunología , Receptores de Complemento/metabolismo , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...