Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 678(Pt A): 656-665, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39216393

RESUMEN

Lipid nanoparticles (LNPs) have become pivotal in advancing modern medicine, from mRNA-based vaccines to gene editing with CRISPR-Cas9 systems. Though LNPs based therapeutics offer promising drug delivery with satisfactory clinical safety profiles, concerns are raised regarding their potential nanotoxicity. Here, we explore the impacts of LNPs on protein stability in buffer and cellular protein homeostasis (proteostasis) in HepG2 cells. First, we show that LNPs of different polyethylene glycol (PEG) molar ratios to total lipid ratio boost protein aggregation propensity by reducing protein stability in cell lysate and blood plasma. Second, in HepG2 liver cells, these LNPs induce global proteome aggregation, as imaged by a cellular protein aggregation fluorescent dye (AggStain). Such LNPs induced proteome aggregation is accompanied by decrease in cellular micro-environmental polarity as quantified by a solvatochromic protein aggregation sensor (AggRetina). The observed local polarity fluctuations may be caused by the hydrophobic contents of LNPs that promote cellular proteome aggregation. Finally, we exploit RNA sequencing analysis (RNA-Seq) to reveal activation of unfolded protein response (UPR) pathway and other proteostasis genes upon LNPs treatment. Together, these findings highlight that LNPs may induce subtle proteome stress by compromising protein stability and proteostasis even without obvious damage to cell viability.

2.
Anal Chim Acta ; 1317: 342916, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39030013

RESUMEN

BACKGROUND: Protein misfolding and aggregation can lead to various diseases. Recent studies have shed light on the aggregated protein in breast cancer pathology, which suggests that it is crucial to design chemical sensors that visualize protein aggregates in breast cancer, especially in clinical patient-derived samples. However, most reported sensors are constrained in cultured cell lines. RESULTS: In this work, we present the development of two isophorone-based crystallization-induced-emission fluorophores for detecting proteome aggregation in breast cancer cell line and tissues biopsied from diseased patients, designated as A1 and A2. These probes exhibited viscosity sensitivity and recovered their fluorescence strongly at crystalline state. Moreover, A1 and A2 exhibit selective binding capacity and strong fluorescence for various aggregated proteins. Utilizing these probes, we detect protein aggregation in stressed breast cancer cells, xenograft mouse model of human breast cancer and clinical patient-derived samples. Notably, the fluorescence intensity of both probes light up in tumor tissues. SIGNIFICANCE: The synthesized isophorone-based crystallization-induced-emission fluorophores, A1 and A2, enable sensitive detection of protein aggregation in breast cancer cells and tissues. In the future, aggregated proteins are expected to become indicators for early diagnosis and clinical disease monitoring of breast cancer.


Asunto(s)
Neoplasias de la Mama , Cristalización , Colorantes Fluorescentes , Proteoma , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Animales , Femenino , Colorantes Fluorescentes/química , Proteoma/análisis , Proteoma/química , Ratones , Agregado de Proteínas , Línea Celular Tumoral , Ratones Desnudos
3.
J Chin Med Assoc ; 87(9): 870-877, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38984546

RESUMEN

BACKGROUND: This study aimed to investigate the clinical efficacy of intra-articular injections of medical chitosan for treating knee osteoarthritis (KOA) and measure the lipid metabolism profiles of the synovial tissue. METHODS: Sixty patients with KOA undergoing conservative treatment were recruited and randomized into two groups: one without pharmacological intervention (OA group) and the other receiving course-based intra-articular medical chitosan injections (CSI group). Quantitative lipidomic profile of synovial tissue was analyzed. Functional scores, including Kellgren-Lawrence rating (K-L), Visual Analog Scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scoring, and American Knee Society (AKS) scoring were conducted. RESULTS: Survival from the initial conservative treatment to final knee arthroplasty was significantly longer in the CSI group compared to the OA group. Except for the presurgery VAS score, no statistically significant differences were observed in the other scores, including K-L, initial VAS, WOMAC, and AKS. However, the CSI group experienced more reductions in AKS-Knee subscores compared to the OA group. Compared to the CSI group, the OA group exhibited a significant upregulation in most differential lipids, particularly triacylglycerides (TAGs, 77%). The OA group had notably higher levels of long-chain unsaturated fatty acids. CONCLUSION: Intra-articular injection of medical chitosan significantly prolongs the survival period before knee arthroplasty and reduces the deposition of TAGs metabolites.


Asunto(s)
Quitosano , Osteoartritis de la Rodilla , Membrana Sinovial , Triglicéridos , Humanos , Osteoartritis de la Rodilla/tratamiento farmacológico , Quitosano/administración & dosificación , Inyecciones Intraarticulares , Masculino , Femenino , Persona de Mediana Edad , Anciano , Membrana Sinovial/metabolismo
4.
Bioorg Chem ; 148: 107491, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788365

RESUMEN

As a consequence of somatosensory nervous system injury or disease, neuropathic pain is commonly associated with chemotherapies, known as chemotherapy-induced peripheral neuropathy (CIPN). However, the mechanisms underlying CIPN-induced proteome aggregation in neuronal cells remain elusive due to limited detection tools. Herein, we present series sensors for fluorescence imaging (AggStain) and proteomics analysis (AggLink) to visualize and capture aggregated proteome in CIPN neuronal cell model. The environment-sensitive AggStain imaging sensor selectively binds and detects protein aggregation with 12.3 fold fluorescence enhancement. Further, the covalent AggLink proteomic sensor captures cellular aggregated proteins and profiles their composition via LC-MS/MS analysis. This integrative sensor platform reveals the presence of proteome aggregation in CIPN cell model and highlights its potential for broader applications in assessing proteome stability under various cellular stress conditions.


Asunto(s)
Antineoplásicos , Enfermedades del Sistema Nervioso Periférico , Proteoma , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/metabolismo , Humanos , Proteoma/análisis , Proteoma/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Estructura Molecular , Agregado de Proteínas/efectos de los fármacos , Imagen Óptica , Relación Dosis-Respuesta a Droga , Proteómica , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología
5.
J Mater Chem B ; 12(10): 2505-2510, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38334693

RESUMEN

The interplay between protein folding and biological activity is crucial, with the integrity of the proteome being paramount to ensuring effective biological function execution. In this study, we report a dual-environment-sensitive probe A1, capable of selectively binding to protein aggregates and dynamically monitoring their formation and degradation. Through in vitro, cellular, and tissue assays, A1 demonstrated specificity in distinguishing aggregated from folded protein states, selectively partitioning into aggregated proteins. Thermal shift assays revealed A1 could monitor the process of protein aggregation upon binding to misfolded proteins and preceding to insoluble aggregate formation. In cellular models, A1 detected stress-induced proteome aggregation in TU212 cells (laryngeal carcinoma cells), revealing a less polar microenvironment within the aggregated proteome. Similarly, tissue samples showed more severe proteome aggregation in cancerous tissues compared to paracancerous tissues. Overall, A1 represents a versatile tool for probing protein aggregation with significant implications for both fundamental research and clinical diagnostics.


Asunto(s)
Carcinoma , Agregado de Proteínas , Humanos , Proteoma/metabolismo , Pliegue de Proteína , Microambiente Tumoral
6.
Anal Chim Acta ; 1278: 341704, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37709448

RESUMEN

Covalent sensors to detect and capture aggregated proteome in stressed cells are rare. Herein, we construct a series of covalent fluorogenic sensors for aggregated proteins by structurally modulating GFP chromophore and arming it with an epoxide warhead. Among them, P2 probe selectively modifies aggregated proteins over folded ones and turns on fluorescence as evidenced by biochemical and mass spectrometry results. The coverage of this epoxide-based covalent chemistry is demonstrated using different types of aggregated proteins. Finally, the covalent fluorescent sensor P2 allows for direct visualization and capture of aggregated proteome in stressed cardiomyocytes and cardiac tissue samples from a cardio-oncology mouse model. The epoxide-based covalent sensor developed herein may become useful for future chemical proteomics analysis of aggregated proteins to dissect the mechanism underlying cardio-oncology.


Asunto(s)
Neoplasias , Proteoma , Animales , Ratones , Cromatografía de Gases y Espectrometría de Masas , Corazón , Compuestos Epoxi
7.
Ecotoxicol Environ Saf ; 262: 115347, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572624

RESUMEN

Decomposition of plastic materials into minuscule particles and their long-term uptake pose increasing concerns on environmental sustainability and biosafety. Besides common cell viability and cytotoxicity evaluations, how plastic nanoparticles interfere with different stress response pathways and affect cellular fitness has been less explored. Here, we provided the first piece of evidence to demonstrate plastic nanoparticles potentially can deteriorate proteome stability, compromise cellular protein homeostasis, and consequently cause global proteome misfolding and aggregation. Polystyrene (PS) nanoparticles of different sizes and surface charges were exploited as model plastic materials. In cell lysate and human blood plasma, naked PS nanoparticles with hydrophobic surface deteriorated proteome thermodynamic stability and exaggerated its aggregation propensity. While no cell viability ablation was observed in cells treated with PS nanoparticles up to 200 µg·mL-1, global proteome aggregation and stress was detected by a selective proteome aggregation sensor. Further proteomics analysis revealed how protein homeostasis network was remodeled by positively charged PS nanoparticles via differential expression of key proteins to counteract proteome stress. In mice model, size-dependent liver accumulation of positively charged PS nanoparticles induced hepatocellular proteome aggregation and compromised protein homeostasis network capacity that were invisible to standard alanine transaminase and aspartate transaminase (ALT/AST) liver function as-say and histology. Meanwhile, long-term liver accumulation of plastic nanoparticles deteriorated liver metabolism and saturated liver detoxification capacity of overdosed acetaminophen. This work highlighted the impact of nanoplastics on cellular proteome integrity and cellular fitness that are invisible to current biochemical assays and clinical tests.

8.
Anal Chem ; 95(31): 11751-11760, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37506028

RESUMEN

The formation of amorphous misfolded and aggregated proteins is a hallmark of proteome stress in diseased cells. Given its lack of defined targeting sites, the rational design of intracellular proteome aggregation sensors has been challenging. Herein, we modulate the amphiphilicity of fluorescent protein chromophores to enable selective detection of aggregated proteins in different biological samples, including recombinant proteins, stressed live cells, intoxicated mouse liver tissue, and human hepatocellular carcinoma tissue. By tuning the number of hydroxyl groups, we optimize the selectivity of fluorescent protein chromophores toward aggregated proteins in these biological samples. In recombinant protein applications, the most hydrophobic P0 (cLogP = 5.28) offers the highest fold change (FC = 31.6), sensitivity (LLOD = 0.1 µM), and brightness (Φ = 0.20) upon binding to aggregated proteins. In contrast, P4 of balanced amphiphilicity (cLogP = 2.32) is required for selective detection of proteome stresses in live cells. In mouse and human liver histology tissues, hydrophobic P1 exhibits the best performance in staining the aggregated proteome. Overall, the amphiphilicity of fluorescent chromophores governs the sensor's performance by matching the diverse nature of different biological samples. Together with common extracellular amyloid sensors (e.g., Thioflavin T), these sensors developed herein for intracellular amorphous aggregation complement the toolbox to study protein aggregation.


Asunto(s)
Agregado de Proteínas , Proteoma , Ratones , Humanos , Animales , Proteoma/química , Proteínas Recombinantes , Colorantes , Amiloide , Colorantes Fluorescentes/química
9.
Chem Commun (Camb) ; 59(66): 10008-10011, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37522834

RESUMEN

Tau protein aggregation into neurofibrillary tangles often causes tauopathies. Herein, we report fluorene based sensors with fluorogenicity upon binding to tau proteins. Intriguingly, these sensors possess triplet state properties to inhibit tau fibrillation upon photo-induced crosslinking.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Proteínas tau/metabolismo , Tauopatías/metabolismo , Ovillos Neurofibrilares/química , Ovillos Neurofibrilares/metabolismo , Fluorenos , Enfermedad de Alzheimer/metabolismo , Fosforilación
10.
J Mater Chem B ; 11(32): 7654-7662, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37464917

RESUMEN

Protein misfolding and aggregation involve complex cellular processes with clinical implications in various diseases. However, the detection of aggregated proteomes without defined 3-D structures in a complex biological milieu is challenging. This study utilizes chromone scaffold-based environment-sensitive fluorophores P1 and P2 to detect misfolded and aggregated proteome in stressed liver cells and the liver tissues diseased patients. The reported crystallization induced emission probes (P1 and P2) exhibit both polarity and viscosity sensitivity, with emission intensity and wavelength linearly correlated to viscosity and polarity. Meanwhile, P1 and P2 selectively and generally fluoresce upon binding to various aggregated proteins. In hepatic cells, P2 outperforms P1 in detecting stress-induced global proteome aggregation. In mouse liver tissue upon drug-induced injury, the fluorescence intensity of P2 correlated with the severity of liver injury, serving as an earlier indicator for liver stress prior to ALT/AST increase. The quantification of emission wavelength reveals lower micro-environmental polarity in liver-injury tissue. In patient-derived tissues with hepatic cancer and cirrhosis, P1 and P2 also report on the presence of aggregated proteome. Together, the reported solvatochromic proteome aggregation sensors can detect hepatic proteome aggregation and analyze its local polarity in cultured cell lines, animal model tissues, and human clinical samples.


Asunto(s)
Neoplasias Hepáticas , Proteoma , Ratones , Animales , Humanos
11.
ACS Sens ; 8(6): 2247-2254, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37248847

RESUMEN

Given the extreme heterogeneity and the loss of defined protein structures, misfolded and aggregated proteins are technically challenging to visualize and analyze. Herein, we assembled an integrated sensor system to resolve aggregated proteome in live cells and animal liver tissues that are overdosed by non-steroidal anti-inflammatory drugs (NSAIDs). A fluorogenic protein aggregation sensor (AggStain) first discovered the presence of aggregated proteome upon overdosing liver cells with NSAIDs. A solvatochromic protein aggregation sensor (AggRetina) further quantified the compactness (polarity) inside these cellular aggregates. Importantly, we exploited a proteomic sensor (AggLink) to selectively capture aggregated proteins upon NSAID overdose and profile their composition, revealing global collapse of cellular protein homeostasis. Finally, we detected subtle proteome aggregation in mouse liver tissue without obvious acute injury at a low NSAID dosage. Overall, we demonstrated an integrated sensor toolset for proteome aggregation studies and unveiled for the first time that NSAID overdose can cause proteome aggregation in liver cells and tissues.


Asunto(s)
Sobredosis de Droga , Proteoma , Animales , Ratones , Agregado de Proteínas , Proteómica , Antiinflamatorios no Esteroideos/toxicidad , Hígado/metabolismo , Sobredosis de Droga/diagnóstico
12.
Anal Chem ; 95(15): 6358-6366, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37017602

RESUMEN

Stress induced amorphous proteome aggregation is a hallmark for diseased cells, with the proteomic composition intimately associated with disease pathogenicity. Due to its particularly dynamic, reversible, and dissociable nature, as well as lack of specific recognition anchor, it is difficult to capture aggregated proteins in situ. In this work, we develop a chemical proteomics method (AggLink) to capture amorphous aggregated proteins in live stressed cells and identify the proteomic contents using LC-MS/MS. Our method relies on an affinity-based chemical probe (AggLink 1.0) that is optimized to selectively bind to and covalently label amorphous aggregated proteins in live stressed cells. Especially, chaotrope-compatible ligation enables effective enrichment of labeled aggregated proteins under urea denaturation and dissociation conditions. Compared to conventional fractionation-based method to profile aggregated proteome, our method showed improved enrichment selectivity, detection sensitivity, and identification accuracy. In HeLa cells, the AggLink method reveals the constituent heterogeneity of aggregated proteome induced by inhibition of pro-folding (HSP90) or pro-degradation (proteasome) pathway, which uncovers a synergistic strategy to reduce cancer cell viability. In addition, the unique fluorogenicity of our probe upon labeling aggregated proteome detects its cellular location and morphology. Together, the AggLink method may help to expand our knowledge of the previously nontargetable amorphous aggregated proteome.


Asunto(s)
Proteoma , Proteómica , Humanos , Proteoma/química , Células HeLa , Cromatografía Liquida/métodos , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
13.
Oral Dis ; 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36321394

RESUMEN

BACKGROUND: Tumour vascular normalisation therapy advocates a balance between pro-angiogenic factors and anti-angiogenic factors in tumours. Artemisinin (ART), which is derived from traditional Chinese medicine, has been shown to inhibit tumour growth; however, the relationship between ART and tumour vascular normalisation in oral squamous cell carcinoma (OSCC) has not been previously reported. METHODS: Different concentrations(0 mg/kg, 25 mg/kg, 50 mg/kg, 100 mg/kg)of ART were used to treat the xenograft nude mice model of OSCC. The effects of ART on migration and proliferation of OSCC and human umbilical vein endothelial cells (HUVEC) cells were detected by scratch assay and CCK-8 assay. OSCC cells with macrophage migration inhibitory factor (MIF) silenced were constructed to explore the effect of MIF. RESULTS: Treatment with ART inhibited the growth and angiogenesis of OSCC xenografts in nude mice and downregulated vascular endothelial growth factor (VEGF), IL-8, and MIF expression levels. ART reduced the proliferation, migration, and tube formation of HUVEC, as well as the expression of VEGFR1 and VEGFR2. When the dose of ART was 50 mg/kg, vascular normalisation of OSCC xenografts was induced. Moreover, VEGF and IL-8 were needed in rhMIF restoring tumour growth and inhibit vascular normalisation after the addition of rhMIF to ART-treated cells. CONCLUSION: Artemisinin might induce vascular normalisation and inhibit tumour growth in OSCC through the MIF-signalling pathway.

14.
ACS Sens ; 7(7): 1919-1925, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35776067

RESUMEN

Deterioration of protein homeostasis (proteostasis) often induces aberrant proteome aggregation. Visualization and dissection of the stressed proteome are of particular interest given their association with numerous degenerative diseases. Recent progress in chemical cellular stress sensors allows for direct visualization of aggregated proteome. Beyond its localization and morphology, the physicochemical nature and the dynamics of the aggregated proteome have been challenging to explore. Herein, we developed a series of solvatochromic fluorene-based D-π-A probes that can selectively and noncovalently bind to a misfolded and aggregated proteome and report on their compactness heterogeneity upon cellular stresses. We achieved this goal by variation of the heterocyclic acceptors to modulate their solvatochromism and binding affinity to amorphous aggregated proteins. The optimized sensor P6 was capable of sensing the polarity differences among different aggregated proteins via its fluorescence emission wavelength. In live cells, P6 revealed the cellular compactness heterogeneity in the aggregated proteome upon cellular stresses. Given the combinative solvatochromic and noncovalent properties, our probe can reversibly monitor the dynamic changes in the aggregated proteome compactness upon stress and after stress recovery, suggesting its potential applications in search of therapeutics to counteract disease-causing proteome stresses.


Asunto(s)
Pliegue de Proteína , Proteoma , Proteostasis
15.
Chem Commun (Camb) ; 58(35): 5407-5410, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35415726

RESUMEN

Protein aggregation in the cell is often manifested by the formation of subcellular punctate structures. Herein, we modulated the solvatochromism and solubility of Nile Red fluorophore derivatives to quantitatively study the polarity inside pathogenic protein aggregates, revealing structure- and protein-dependent polarity heterogeneity.


Asunto(s)
Oxazinas , Agregado de Proteínas , Colorantes Fluorescentes/química , Ionóforos , Oxazinas/química
18.
Free Radic Biol Med ; 173: 29-40, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34246777

RESUMEN

Acute pancreatitis (AP) is an inflammatory disorder associated with multiple organ failure. Pyroptosis and ferroptosis are two newly recognized cell death, and whether pyroptosis and ferroptosis are involved in AP remain largely elusive. The nature compound Wedelolactone (Wed) exhibits strong anti-inflammatory and antioxidant activities, the present study aims to investigate the effect of Wed on AP and unravel whether Wed could protect against AP and relevant lung injury against pyroptosis and ferroptosis. Our results showed that the pyroptosis inhibitor disulfiram or ferroptosis inhibitor ferrostatin-1 significantly alleviated AP and associated lung injury in the taurocholate or caerulein-induced murine AP model. Administration with Wed ameliorated AP and lung injury as evidenced by improved pathological injuries, reduced serum pancreatic digestive enzymes, and proinflammatory cytokines. The in vivo and in vitro data demonstrated that Wed broadly inhibited caspase1/caspase11 activation, reduced mature interleukin-1ß (IL-1ß) and N-terminal domain of gasdermin D (GSDMD-N) level. The oxidative stress and lipid peroxidation were also suppressed along with the up-regulation of the ferroptosis antagonism marker glutathione peroxidase-4 (GPX4) in Wed treatment group. Wed promoted the transcriptional activity and the selenium sensitivity of GPX4. Moreover, the protective effects of Wed in caerulein-stimulated pancreatic acinar cells were markedly abrogated by the down-regulation of GPX4. Collectively, our data suggest that pyroptosis and ferroptosis play crucial roles in AP. Wed mitigated AP and associated lung injury via GPX4 mediated suppression of pyroptosis and ferroptosis.


Asunto(s)
Ferroptosis , Lesión Pulmonar , Pancreatitis , Enfermedad Aguda , Animales , Cumarinas , Lesión Pulmonar/tratamiento farmacológico , Ratones , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Piroptosis
19.
J Cell Mol Med ; 24(19): 11465-11476, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32820613

RESUMEN

Fatty acid synthase (FASN) has been shown to be selectively up-regulated in cancer cells to drive the development of cancer. However, the role and associated mechanism of FASN in regulating the malignant progression of salivary adenoid cystic carcinoma (SACC) still remains unclear. In this study, we demonstrated that FASN inhibition attenuated invasion, metastasis and EMT of SACC cells as well as the expression ofPRRX1, ZEB1, Twist, Slug and Snail, among which the level of PRRX1 changed the most obviously. Overexpression of PRRX1 restored migration and invasion in FASN knockdown cells, indicating that PRRX1 is an important downstream target of FASN signalling. Levels of cyclin D1 and c-Myc, targets of Wnt/ß-catenin pathway, were significantly decreased by FASN silencing and restored by PRRX1 overexpression. In addition, FASN expression was positively associated with metastasis and poor prognosis of SACC patients as well as with the expression of PRRX1, cyclin D1 and c-Myc in SACC tissues. Our findings revealed that FASN in SACC progression may induce EMT in a PRRX1/Wnt/ß-catenin dependent manner.


Asunto(s)
Carcinoma Adenoide Quístico/patología , Transición Epitelial-Mesenquimal , Ácido Graso Sintasas/metabolismo , Proteínas de Homeodominio/metabolismo , Neoplasias de las Glándulas Salivales/patología , Vía de Señalización Wnt , Animales , Apoptosis/genética , Carcinoma Adenoide Quístico/genética , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , Neoplasias de las Glándulas Salivales/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
J Exp Clin Cancer Res ; 39(1): 102, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493454

RESUMEN

BACKGROUND: Human papillomavirus (HPV)-positive oral squamous cell carcinoma (OSCC) is increasing worldwide with typically higher grade and stage, while better prognosis. microRNAs (miRNAs) has been shown to play a critical role in cancer, however, their role in HPV-positive OSCC progression remains unclear. METHODS: miRNA microarray was performed to identify differentially expressed miRNAs. qRT-PCR and FISH were performed to determine the relative expression of miR-550a-3-5p. CCK-8, Flow cytometry, Wound healing, Cell invasion assays and xenograft experiments were conducted to analyze the biological roles of miR-550a-3-5p. Tumor-associated macrophages (TAMs) generation, co-culturing of cancer cells with TAMs, Western blot, Dual-luciferase reporter gene assay, Immunohistochemistry and animal studies were performed to explore the mechanisms underlying the functions of miR-550a-3-5p. RESULTS: We identified 19 miRNAs differentially expressed in HPV-positive OSCC specimens and miR-550a-3-5p was down-regulated. The low expression of miR-550a-3-5p correlated with higher tumor size and nodal metastasis of HPV-positive OSCC patients. Then, we found that miR-550a-3-5p suppressed the migration, invasion and EMT of HPV-positive OSCC cells dependent on decreasing M2 macrophages polarization. Moreover, miR-550a-3-5p, down-regulated by E6 oncoprotein, inhibited M2 macrophages polarization by YAP/CCL2 signaling, which in turn abrogating EMT program in HPV-positive OSCC cells. In addition, in both xenografts and clinical HPV-positive OSCC samples, miR-550a-3-5p levels were inversely associated with YAP, CCL2 expressions and the number of M2 macrophages. CONCLUSIONS: E6/miR-550a-3-5p/YAP/CCL2 signaling induces M2 macrophages polarization to enhance EMT and progression, revealing a novel crosstalk between cancer cells and immune cells in HPV-positive OSCC microenvironment.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/patología , Regulación Neoplásica de la Expresión Génica , Macrófagos/patología , MicroARNs/genética , Neoplasias de la Boca/patología , Infecciones por Papillomavirus/complicaciones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virología , Proliferación Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Macrófagos/virología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/virología , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/aislamiento & purificación , Infecciones por Papillomavirus/virología , Pronóstico , Transducción de Señal , Tasa de Supervivencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA