Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407353, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953247

RESUMEN

To explore the mechanisms and therapeutic strategies for G-quadruplex (G4) mediated diseases, it is crucial to manipulate and intervene in intracellular G4 structures using small molecular tools. While hundreds of G4 stabilizers have been developed, there is a significant gap in the availability of G4 unwinding agents. Here, we propose a strategy to disrupt G-quadruplexes by forming G-C hydrogen bonds with chemically modified cytidine trimers. We validated a good G4 unwinder, the 2'-F cytidine trimer (2'-F C3). 2'-F C3 does not inhibit cell growth nor cause severe DNA damage at a concentration below 10 µM. Moreover, 2'-F C3 does not affect gene transcription nor RNA splicing, while it significantly enhances the translation of G4-containing mRNA and upregulates RNA splicing, RNA processing and cell cycle pathways. The discovery of this G4 unwinder provides a functional tool for the chemical modulation of G4s in living cells.

2.
Huan Jing Ke Xue ; 45(5): 2548-2557, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629520

RESUMEN

A total of 18 metal elements in ambient PM2.5 in Zhengzhou were continuously determined using an online heavy metal observation instrument in January and April, 2021, and the changes in element concentrations were analyzed. Metal elements were traced via enrichment factors, positive matrix factorization (PMF), and a characteristic radar chart. The US EPA health risk assessment model was used to assess the health risks of heavy metals, and the backward trajectory method and the concentration-weighted trajectory (CWT) method were used to evaluate the potential source regions of health risks. The results showed that the element concentrations were higher in spring, and the sum of Fe, Ca, Si, and Al concentrations accounted for 89.8% and 87.5% of the total element concentrations in winter and spring, respectively. Cd was enriched significantly, which was related to human activities. The concentrations of Pb, Se, Zn, Ni, Sb, and K in winter and Cr, Ni, Fe, Mn, V, Ba, Ca, K, Si, and Al in spring increased with the increasing pollution level. The results of PMF and the characteristic radar chart showed that the main sources of metal elements in winter and spring were industry, crust, motor vehicles, and mixed combustion, with industry and mixed combustion pollution occurring more often in winter and crust pollution occurring more often in spring. Significant non-carcinogenic risks existed in both winter and spring with more severe health risks in winter, and Mn caused significant non-carcinogenic risks. The health risks in winter were mainly influenced by Zhengzhou and surrounding cities and long-distance transport in the northwest, and the health risks in spring were mainly influenced by Zhengzhou and surrounding cities.


Asunto(s)
Contaminantes Atmosféricos , Metales Pesados , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Medición de Riesgo , China
3.
J Am Chem Soc ; 145(33): 18578-18590, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37553999

RESUMEN

Bimolecular or tetramolecular G-quadruplexes (GQs) are predominantly self-assembled by the same sequence-identical G-rich oligonucleotides and usually remain inert to the strand displacement reaction (SDR) with other short G-rich invading fragments of DNA or RNA. Appealingly, in this study, we demonstrate that a parallel homomeric bimolecular GQ target of Tub10 d(CAGGGAGGGT) as the starting reactant, although completely folded in K+ solution and sufficiently stable (melting temperature of 57.7 °C), can still spontaneously accept strand invasion by a pair of short G-rich invading probes of P1 d(TGGGA) near room temperature. The final SDR product is a novel parallel heteromeric trimolecular GQ (tri-GQ) of Tub10/2P1 reassembled between one Tub10 strand and two P1 strands. Here we present, to the best of our knowledge, the first NMR solution structure of such a discrete heteromeric tri-GQ and unveil a unique mode of two probes vs one target in mutual recognition among G-rich canonical DNA oligomers. As a model system, the short invading probe P1 can spontaneously trap G-rich target Tub10 from a Watson-Crick duplex completely hybridized between Tub10 and its fully complementary strand d(ACCCTCCCTG). The Tub10 sequence of d(CAGGGAGGGT) is a fragment from the G-rich promoter region of the human ß2-tubulin gene. Our findings provide new insights into the Hoogsteen pairing-based SDR between a GQ target and double invading probes of short G-rich DNA fragments and are expected to grant access to increasingly complex architectures in GQ-based DNA nanotechnology.


Asunto(s)
G-Cuádruplex , Humanos , ADN/química , Oligonucleótidos/química , Recombinación Genética , ARN
4.
Nucleic Acids Res ; 49(18): 10717-10734, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34500466

RESUMEN

The final 3'-terminal residue of the telomeric DNA G-overhang is inherently less precise. Here, we describe how alteration of the last 3'-terminal base affects the mutual recognition between two different G-rich oligomers of human telomeric DNA in the formation of heteromolecular G-quadruplexes (hetero-GQs). Associations between three- and single-repeat fragments of human telomeric DNA, target d(GGGTTAGGGTTAGGG) and probe d(TAGGGT), in Na+ solution yield two coexisting forms of (3 + 1) hybrid hetero-GQs: the kinetically favourable LLP-form (left loop progression) and the thermodynamically controlled RLP-form (right loop progression). However, only the adoption of a single LLP-form has been previously reported between the same probe d(TAGGGT) and a target variant d(GGGTTAGGGTTAGGGT) having one extra 3'-end thymine. Moreover, the flanking base alterations of short G-rich probe variants also significantly affect the loop progressions of hetero-GQs. Although seemingly two pseudo-mirror counter partners, the RLP-form exhibits a preference over the LLP-form to be recognized by a low equivalent of fluorescence dye thioflavin T (ThT). To a greater extent, ThT preferentially binds to RLP hetero-GQ than with the corresponding telomeric DNA duplex context or several other representative unimolecular GQs.


Asunto(s)
Benzotiazoles , Colorantes Fluorescentes , G-Cuádruplex , Telómero/química , ADN/química , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Secuencias Repetitivas de Ácidos Nucleicos
5.
Nucleic Acids Res ; 49(4): 2306-2316, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33524157

RESUMEN

Vast G-quadruplexes (GQs) are primarily folded by one, two, or four G-rich oligomers, rarely with an exception. Here, we present the first NMR solution structure of a trimolecular GQ (tri-GQ) that is solely assembled by the self-trimerization of d(GTTAGG), preferentially in Na+ solution tolerant to an equal amount of K+ cation. Eight guanines from three asymmetrically folded strands of d(GTTAGG) are organized into a two-tetrad core, which features a broken G-column and two width-irregular grooves. Fast strand exchanges on a timescale of second at 17°C spontaneously occur between folded tri-GQ and unfolded single-strand of d(GTTAGG) that both species coexist in dynamic equilibrium. Thus, this tri-GQ is not just simply a static assembly but rather a dynamic assembly. Moreover, another minor tetra-GQ that has putatively tetrameric (2+2) antiparallel topology becomes noticeable only at an extremely high strand concentration above 18 mM. The major tri-GQ and minor tetra-GQ are considered to be mutually related, and their reversible interconversion pathways are proposed accordingly. The sequence d(GTTAGG) could be regarded as either a reading frame shifted single repeat of human telomeric DNA or a 1.5 repeat of Bombyx mori telomeric DNA. Overall, our findings provide new insight into GQs and expect more functional applications.


Asunto(s)
ADN/química , G-Cuádruplex , Potasio/química , Sodio/química , Animales , Bombyx/genética , Calor , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Telómero/química
6.
Nucleic Acids Res ; 47(3): 1544-1556, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30445650

RESUMEN

Aside from classical loops among G-quadruplexes, the unique leaped V-shape scaffold spans over three G-tetrads, without any intervening residues. This scaffold enables a sharp reversal of two adjacent strand directions and simultaneously participates in forming the G-tetrad core. These features make this scaffold itself distinctive and thus an essentially more accessible target. As an alternative to the conventional antisense method using a complementary chain, forming an intermolecular G-quadruplex from two different oligomers, in which the longer one as the target is captured by a short G-rich fragment, could be helpful for recognizing G-rich sequences and structural motifs. However, such an intermolecular leaped V-shape G-quadruplex consisting of DNA oligomers of quite different lengths has not been evaluated. Here, we present the first nuclear magnetic resonance (NMR) study of an asymmetric intermolecular leaped V-shape G-quadruplex assembled between an Oxytricha nova telomeric sequence d(G2T4G4T4G4) and a single G-tract fragment d(TG4A). Furthermore, we explored the selectivity of this short fragment as a potential probe, examined the kinetic discrimination for probing a specific mutant, and proposed the key sequence motif d(G2NG3NG4) essential for building the leaped V-shape G-quadruplexes.


Asunto(s)
ADN/química , G-Cuádruplex , Conformación de Ácido Nucleico , Telómero/química , Secuencia de Bases/genética , ADN/genética , Sondas de ADN/química , Sondas de ADN/genética , Cinética , Espectroscopía de Resonancia Magnética , Soluciones , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA