Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Analyst ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855851

RESUMEN

Aflatoxin B1 (AFB1), classified as a class I carcinogen, is a widespread mycotoxin that poses a serious threat to public health and economic development, and the food safety problems caused by AFB1 have aroused worldwide concern. The development of accurate and sensitive methods for the detection of AFB1 is significant for food safety monitoring. In this work, a sandwich-type photoelectrochemical (PEC) biosensor for AFB1 detection was constructed on the basis of an aptamer-antibody structure. A good photocurrent response was obtained due to the sensitization of In2S3 by Ru(bpy)32+. In addition, this sandwich-type sensor constructed by modification with the antibody, target detector, and aptamer layer by layer attenuated the migration hindering effect of photogenerated carriers caused by the double antibody structure. The aptamer and antibody synergistically recognized and captured the target analyte, resulting in more reliable PEC response signals. CdSe@CdS QDs-Apt were modified as a signal-off probe onto the sensor platform to quantitatively detect AFB1 with a "signal-off" response, which enhanced the sensitivity of the sensor. The PEC biosensor showed a linear response range from 10-12 to 10-6 g mL-1 with a detection limit of 0.023 pg mL-1, providing a feasible approach for the quantitative detection of AFB1 in food samples.

2.
J Colloid Interface Sci ; 665: 144-151, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38520931

RESUMEN

Electrochemiluminescence (ECL) biosensors provide a convenient and high sensitivity method for early disease diagnosis. However, creating luminophore arrays relying on powerful ECL signals remains a daunting task. Porphyrin-centered metal organic frameworks (MOFs) exhibit remarkable potential in ECL sensing applications. In this paper, based on a simple one-pot synthesis method, PCN-222@Ag NPs doped with CeO2 was synthesized to enhance the ECL performance. Due to the strong catalytic ability of CeO2, the ECL signal strength of the new material PCN-222@CeO2@Ag NPs is much higher than that of the PCN-222@Ag NPs and PCN-222. The luminous properties of PCN-222@CeO2@Ag NPs become more intense and stable due to the excellent electronic conductivity of Ag NPs. Based on the fact that CuS@PDA composite can quench the ECL signal of PCN-222@CeO2@Ag NPs, we constructed a novel sandwich ECL immune sensor for the detection of phosphorylated Tau 181 (p-Tau-181) protein. The ECL sensor has a great linear relationship with p-Tau-181 protein concentration, ranging from 1 pg/mL to 100 ng/mL. The detection limit is as low as 0.147 pg/mL. This work provides new ideas for developing sensitive ECL sensors for the p-Tau-181 protein, the marker of Alzheimer's disease.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Mediciones Luminiscentes/métodos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección
3.
Surg Laparosc Endosc Percutan Tech ; 33(6): 645-651, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38053324

RESUMEN

BACKGROUND: Patients who have gastric cancer with outlet obstruction (GCOO) and bulky N2 metastases cannot undergo curative resection and tolerate chemotherapy poorly, which may be improved by multimodality therapy (MMT) combined with laparoscopic gastrectomy. PATIENTS AND METHODS: The records of patients with GCOO and bulky N2 metastases who received MMT including nasojejunal feeding combined with preoperative chemotherapy (PCT), followed by laparoscopic exploration [enteral nutritional (EN) group] in sequence or laparoscopic gastrojejunostomy (LGJ) before PCT plus laparoscopic gastrectomy (LGJ group) were retrospectively reviewed. Prognostic Nutritional Index, gastric outlet obstruction scoring system grade, quality of life, response to PCT, surgical outcomes, and long-term survival were analyzed. RESULTS: Fifty-four consecutive patients with GCOO and bulky N2 metastases were identified. The Prognostic Nutritional Index and Nutritional Risk Screening-2002 score of patients were significantly improved as a result of multimodal therapy, but no superiority was demonstrated between the EN group and the LGJ group. The quality of life (52.6 ± 11.4 vs 68.2 ± 13.5, P = 0.036) and gastric outlet obstruction scoring system (P < 0.05) of patients in the LGJ group were better compared with the EN group. The rate of laparoscopic D2 gastrectomy (94.3% vs 92.9%, P = 0.64) and R0 resection (91.4% vs 92.9%, P = 0.53) in the EN group was similar to the LGJ group. There were no significant differences for the 5-year overall survival rate (63.2% vs 57.1, P = 0.86) and the 5-year relapse-free survival rate (42.9% vs 53.8%, P = 0.54) of patients in the EN group compared with the LGJ group. CONCLUSIONS: MMT including EN support or laparoscopic gastrojejunostomy followed by laparoscopic D2 gastrectomy is a feasible and effective treatment for patients with GCOO and bulky N2 metastases.


Asunto(s)
Obstrucción de la Salida Gástrica , Laparoscopía , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/complicaciones , Neoplasias Gástricas/cirugía , Estudios Retrospectivos , Calidad de Vida , Recurrencia Local de Neoplasia/cirugía , Gastrectomía , Obstrucción de la Salida Gástrica/etiología , Obstrucción de la Salida Gástrica/cirugía
4.
Chem Commun (Camb) ; 59(100): 14847-14850, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38015452

RESUMEN

An ultrasensitive photoelectrochemical (PEC) aptasensor was originally designed by using ZnIn2S4/ReS2 as a photoactive material and AgInS2 as a signal amplifier. The signal amplifier AgInS2 was incubated on the terminal of H-DNA (immobilized on the ZnIn2S4/ReS2/FTO surface), leading to an enhanced photocurrent response. Then, due to the introduction of DNA2, the formation of a double-stranded structure caused AgInS2 to keep away from the electrode surface, and the photocurrent was reduced. In the presence of kanamycin, DNA2 was released from the system due to the competition relationship, and a restored photocurrent response was obtained. The combination of ZnIn2S4/ReS2 and AgInS2 accelerated the electron transfer and enhanced the separation efficiency of photogenerated electron-hole pairs, resulting in an improved performance of the PEC aptasensor, which was capable of accurate and sensitive detection of kanamycin in actual samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Kanamicina , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Transporte de Electrón , Electrodos , Límite de Detección , Aptámeros de Nucleótidos/química
5.
Analyst ; 148(4): 772-779, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36661384

RESUMEN

In this study, for the first time, a silver-based metal-organic framework (Ag-MOF) was synthesized and used as the electrochemiluminescence (ECL) emitter for building an ECL sensor. After modification with chitosan (CS) and gold nanoparticles (Au NPs), the ECL stability of Ag-MOF was improved. To detect mercury ions, a biosensor was constructed using the mercury ion aptamer and steric effect of streptavidin. First, the capture strand (cDNA) with terminal-modified sulfhydryl group was attached to the electrode surface by the Au-S bond. Then, the mercury-ion aptamer (Apt-Hg) modified with biotin was anchored to the electrode by complementary pairing with cDNA. Streptavidin (SA) could be fixed on the electrode by linking with biotin, thereby reducing the ECL signal. However, in the presence of mercury ions, the aptamer was removed and streptavidin could not be immobilized on the electrode. Hence, the ECL signal of the sensor increased with the concentration of mercury ions, which was linear in the range from 1 µM to 300 fM. The detection limit could reach 66 fM (S/N = 3). The sensor provided a new method for the detection of mercury ions.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Mercurio , Nanopartículas del Metal , Biotina/química , Estreptavidina/química , Plata , ADN Complementario , Oro/química , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Mediciones Luminiscentes/métodos , Aptámeros de Nucleótidos/química , Iones , Técnicas Biosensibles/métodos , Límite de Detección
6.
Talanta ; 253: 123601, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36126520

RESUMEN

A novel photoelectrochemical (PEC) biosensor based on b-TiO2/CdS:Eu/Ti3C2 heterojunction was developed for ultrasensitive determination of miRNA-21. In this device, the b-TiO2/CdS:Eu/Ti3C2 heterojunction with excellent energy level arrangement effectively facilitated photoelectric conversion efficiency and accelerated the separation of the photogenerated electron hole pairs, which because that the structure of heterojunction overcomes the drawbacks of single material, such as narrow light absorption range, wide band gap, short carrier lifetime, etc., improves light utilization, extends the lifetime of photogenerated electron hole pairs, and promotes electron transfer. Herein, hairpin DNA1 (H1) decorated on the b-TiO2/CdS:Eu/Ti3C2 electrode surface by Cd-S bonds, after H2/miRNA-21 heterduplex was introduced, the strand-displacement reaction (SDR) was triggered between H1 and H2/miRNA-21, accordingly, miRNA-21 was discharged from the H2/miRNA-21 heterduplex, forming the H1/H2 duplex, and the reuse of miRNA-21 was realized. As a signal amplification factor, the signal amplification factor H3-CdSe was hybridized with H1/H2 duplex, which greatly enhanced the sensitivity of the PEC biosensor. Under optimal conditions, the designed PEC biosensor displayed outstanding sensitivity, selectivity and stability with a wide liner range from 1.0 µM to 10.0 fM and a low detection limit of 3.3 fM. The preparation of the optoelectronic material affords a new direction for the progress of heterojunction photovoltaic materials and the construction of the proposed biosensor also provides a new thought for the PEC detection of human miRNA-21 with superior performance. Simultaneously, the established biosensor exhibiting tremendous possibility for detecting other biomarkers and biomolecules in clinical diagnosis fields.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Titanio , Humanos , Electrodos , Fotoquímica
7.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1010568

RESUMEN

Research in stomatology (dental medicine) continues to expand globally and is oriented towards solving clinical issues, focusing on clarifying the clinical relevance and potential mechanisms of oral‍-‍systemic connections via clinical epidemiology, oral microecological characterization, and the establishment of animal models. Interdisciplinary integration of materials science and tissue engineering with stomatology is expected to lead to the creation of innovative materials and technologies to better resolve the most prevalent and challenging clinical issues such as peri-implantitis, soft and hard tissue defects, and dentin hypersensitivity. With the rapid development of artificial intelligence (AI), 5th generation mobile communication technology (5G), and big data applications, "intelligent stomatology" is emerging to build models for better clinical diagnosis and management, accelerate the reform of education, and support the growth and advancement of scientific research. Here, we summarized the current research status, and listed the future prospects and limitations of these three aspects, aiming to provide a basis for more accurate etiological exploration, novel treatment methods, and abundant big data analysis in stomatology to promote the translation of research achievements into practical applications for both clinicians and the public.


Asunto(s)
Animales , Medicina Oral , Inteligencia Artificial
8.
J Fungi (Basel) ; 8(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36294591

RESUMEN

Aspergillus terreus is well-known for its ability to biosynthesize valuable pharmaceuticals as well as structurally unique secondary metabolites. However, numerous promising cryptic secondary metabolites in this strain regulated by silent gene clusters remain unidentified. In this study, to further explore the secondary metabolite potential of A. terreus, the essential histone deacetylase hdaA gene was deleted in the marine-derived A. terreus RA2905. The results showed that HdaA plays a vital and negative regulatory role in both conidiation and secondary metabolism. Loss of HdaA in A. terreus RA2905 not only resulted in the improvement in butyrolactone production, but also activated the biosynthesis of new azaphilone derivatives. After scaled fermentation, two new azaphilones, asperterilones A and B (1 and 2), were isolated from ΔhdaA mutant. The planar structures of compounds 1 and 2 were undoubtedly characterized by NMR spectroscopy and mass spectrometry analysis. Their absolute configurations were assigned by circular dichroism spectra analysis and proposed biosynthesis pathway. Compounds 1 and 2 displayed moderate anti-Candida activities with the MIC values ranging from 18.0 to 47.9 µM, and compound 1 exhibited significant cytotoxic activity against human breast cancer cell line MDA-MB-231. This study provides novel evidence that hdaA plays essential and global roles in repressing secondary metabolite gene expression in fungi, and its deletion represents an efficient strategy to mine new compounds from A. terreus and other available marine-derived fungi.

9.
Ann Transl Med ; 10(17): 931, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36172101

RESUMEN

Background: Several human diseases are associated with aberrant expression of regulators involved in N6-methyladenosine (m6A) RNA modification. However, their role in aortic valve calcification (AVC) is largely unknown. The aim of this study was to determine the general expression pattern and potential function of m6A regulators in AVC by bioinformatics methods. Methods: We obtained AVC datasets from the Gene Expression Omnibus (GEO). The identification of m6A-related differentially expressed genes (DEGs) and the Consensus Clustering method was performed to type AVC individuals based DEGs. Then, we quantified the effect of typing by principal component analysis (PCA). Next, we performed the weighted gene co-expression network analysis (WGCNA) and identified the main modules as well as functional analysis. Additionally, the key genes were screened by protein-protein interaction network (PPIN) analysis and identifying important genes of important modules. We again typed AVC individuals by the same method using key genes. Finally, we evaluated the link between key genes and immune infiltration. Results: We discovered that METTL14, ZC3H13, FTO, FMR1, HNRNPA2B1, HNRNPC, LRPPRC, YTHDC1, YTHDC2, and YTHDF1 expression levels decreased considerably in AVC tissues. Based on 10 genes, we typed 240 AVC samples as clusters A and B. We assessed the immune cell content in 240 samples using Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) and found that B cell memory, CD8 T cells, T follicular helper cells, monocytes, M0 macrophages, resting dendritic cells (DCs), and interleukin-10 (IL-10) were concentrated in the cluster A group. Additionally, based on the important WGCNA modules, we identified 7 key genes. Next, 240 samples were retyped based on 7 key genes; we found that T cells CD8, T cells CD4 memory activated, T cells follicular helper, and macrophages M1 were significantly increased in gene cluster-1. Finally, we performed functional enrichment of gene cluster-typed samples, showing potential functional differences between different types. Conclusions: Our study provides a review of the m6A regulators' expression pattern and functional importance in human AVC. The data from this study might serve as a significant resource for future mechanistic and therapeutic investigations into the role of critical m6A regulators in AVC.

10.
Dis Markers ; 2022: 4433270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909892

RESUMEN

Background: Alternative splicing (AS) plays a crucial role in regulating the progression of colorectal cancer (CRC), but its distribution remains to be explored. Here, we aim to investigate the genes edited by AS which show differential expression in patients with mismatch repair deficiency (dMMR)/microsatellite instability (MSI). Materials and Methods: We applied long-read nanopore sequencing to determine the mRNA profiles and screen AS genes using Oxford Nanopore Technologies (ONT) method in ten paired CRC tissues. CRC tissue and plasma samples were used to validate the differential genes with AS using real-time fluorescent quantitative PCR, immunohistochemistry, and enzyme-linked immunosorbent assay. Results: ONT sequencing identified 404 genes were downregulated, and 348 genes were upregulated in MSI cancer tissues compared with microsatellite stability (MSS) cancer tissues. In total, 6,200 AS events were identified in 2,728 mRNA transcripts. WGCNA revealed dMMR/MSI-correlated gene modules, including INHBA and RPL22L1, which were upregulated; conversely, HMGCS2 was downregulated in MSI cancer. Overexpression of RPL22L1, INHBA, and CAPZA1 was further confirmed in CRC tissues. INHBA was found to be associated with tumor lymphatic metastasis. Importantly, the levels of INHBA in CRC plasma were significantly increased compared with those in noncancer plasma. INHBA showed a higher level in dMMR/MSI CRC than in MSS CRC, indicating that INHBA is a useful biomarker. Conclusion: Our results showed that ONT-identified genes provide a pool to explore AS-associated markers for dMMR/MSI CRC. We demonstrated INHBA as a promising signature for clinical application in predicting tumor lymphatic metastasis and screening dMMR/MSI candidates.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Secuenciación de Nanoporos , Empalme Alternativo , Neoplasias Colorrectales/patología , Reparación de la Incompatibilidad de ADN/genética , Humanos , Metástasis Linfática , Inestabilidad de Microsatélites , ARN Mensajero/genética
11.
Mikrochim Acta ; 189(7): 264, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776207

RESUMEN

The electrochemiluminescence and resonance energy transfer (ECL-RET) method was adopted to detect miRNAs, in which the two-dimensional Ti3C2 Mxenes with high surface area modified with CdS:W nanocrystals (CdS:W NCs) were used as ECL signal emitter. Mxenes with a specific surface area of 5.2755 m2/g carried more emitters and promote ECL intensity. As an energy acceptor, BiOCl nanosheets (BiOCl NSs) have a wide UV-Vis absorption peak in the range 250 nm-700 nm, including the emission band of CdS:W NCs with 520 nm emission wavelength. Hence, BiOCl NSs are covalently bound to hairpin DNA 2 by amide bond to quench the ECL signal of CdS:W NCs. In the presence of miRNA-141, the hairpin DNA 1 modified on the GCE was unfold and then paired with hairpin DNA 2 to release miRNA-141 and quench the signal of the ECL biosensor. Then, the concentration signal of miRNA-141 was amplified by catalytic hairpin assembly. The novel specific biosensor demonstrated a satisfactory linear relationship with miRNA-141 in the range 0.6 pM to 4000 pM; the detection limit was as low as 0.26 pM (3 s/m) under the potential of 0 ~ -1.3 V and showed outstanding RSD of 1.19%. The findings of the present work with high accuracy and sensitivity will be of positive significance for the clinical diagnosis of miRNA in the future work. The construction process of the biosensor and electrochemiluminescence mechanism.


Asunto(s)
Técnicas Electroquímicas , MicroARNs , ADN/química , ADN/genética , Técnicas Electroquímicas/métodos , Transferencia de Energía , Mediciones Luminiscentes/métodos , MicroARNs/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-35537183

RESUMEN

In this work, a two-dimensional (2D) MOF sheet with electrochemiluminescence (ECL) activity is prepared with Ti3C2Tx MXene as the metal precursor and the meso-tetra(4-carboxyl-phenyl) porphyrin (H2TCPP) as the organic ligand. The atomically thin 2D Ti3C2Tx MXene is utilized as the metal precursor and soft template to produce the MOF with a 2D nanosheet morphology (Ti3C2Tx-PMOF). Ti3C2Tx MXene is a kind of strong electron acceptor, which can deprotonate H2TCPP due to the high electronegativity and low work function of its terminal atoms. The deprotonated H2TCPP continues to bind with Ti atoms to form the 2D MOF sheet. The ECL activity is inherited from H2TCPP and stabilized by introducing Ag NPs. Then, we construct an ECL biosensor based on the Ag NPs/Ti3C2Tx-PMOF to detect the oral cancer overexpressed 1 (ORAOV 1). A bipedal three-dimensional DNA walker strategy is adopted to further improve the biosensor sensitivity. As expected, the biosensor exhibits sterling sensitivity and selectivity. The ECL biosensor responds linearly to ORAOV 1 concentrations in the range of 10 fM-1 nM, and the detection limit is as low as 3.3 fM (S/N = 3). It means that Ag NPs/Ti3C2Tx-PMOF is a potential material to design and construct the high-performance ECL biosensors.

13.
Front Surg ; 8: 678806, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568411

RESUMEN

Background and Aims: The contradiction of management modality between acute myocardial infarction(AMI) and aortic dissection(AD) may result in clinical catastrophe. Data on risk factors, incidence, and outcome of AD and AMI are limited, and there have been no studies on the long-term outcomes of AMI in patients with AD. So we aimed to investigate long-term outcomes after AMI in patients with AD, and propose a useful diagnostic paradigm. Methods: Consecutively enrolled patients with AD and AMI who were referred to our center from 2010 to 2017. Baseline patient characteristics, risk factors, all medical treatments, echocardiographic parameters, laboratory data, and treatment were recorded. All patients were followed up from the first hospitalization until a first heart event, death, or 17 March, 2018. Results: 0.13% in AMI and 7.49% in AD patients had a concomitant diagnosis of AD and AMI. The average patient age was 53.3 ± 12.1 years and 84.6% were male. The most prevalent vascular risk factors were hypertension (69.2%) and current smoker (64.1%). Of all the 39 patients, 66.7% were managed surgically. Overall in-hospital mortality was 10.3%. The 30-day and 5-year fatality rates were 23.1% and 35.9%, but were higher for female than for male (66.7 vs. 30.3%, log-rank P = 0.045) on 5-year mortality. The overall survival of females was inferior to the males (log-rank P = 0.045). Conclusions: Patients with AMI and AD exhibit high 5-year fatality rates. For these patients, surgical management tends to have lower mortality. Improved management of hypertension and smoking, may reduce future incidence rates.

14.
Talanta ; 233: 122546, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34215049

RESUMEN

In this paper, hydrothermal method was used for the synthesis of SnO2 quantum dots (QDs). The prepared SnO2 QDs have a uniform particle size distribution and good electrochemiluminescence (ECL) property. Then the prepared SnO2 QDs was combined with graphene-like carbon nitride (g-C3N4) through chitosan to form SnO2/chitosan/g-C3N4 nanocomposite and used for detecting the lincomycin. The characteristics of SnO2/chitosan/g-C3N4 nanocomposite were presented by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), and the analytical results proving that the nanocomposite was prepared successfully. In this strategy, the SnO2/chitosan/g-C3N4 nanocomposite was acted as the substrate of aptasensor. Then, SH-DNA (aptamer DNA) was assembled on the surface of electrode, after 6-mercaptohexanol (MCH) blocked the unbound sites of the electrode surface, ferrocene-DNA (Fc-DNA) was incubated on the electrode surface through base complementation with aptamer DNA. In the absence of lincomycin, due to the low conductivity of Fc-DNA and the photo-excited energy electron transfer, the ECL signal was quenched. In the presence of lincomycin, the aptamer DNA was specific binding with lincomycin, and ferrocene-DNA (Fc-DNA) was detached from the surface of aptasensor electrode, generating an obviously enhancement of ECL signal. To ensure the accuracy of the data, each electrode runs continuously for 3600 s. Under optimal experimental conditions, the detection range of the aptasensor was 0.10 ng mL-1 - 0.10 mg mL-1, and the detection limit was 0.028 ng mL-1. In addition, the aptasensor has good stability and reproducibility, and also provided a hopeful device for all kinds of other protein target.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Quitosano , Nanocompuestos , Técnicas Electroquímicas , Lincomicina , Mediciones Luminiscentes , Reproducibilidad de los Resultados
15.
Analyst ; 146(1): 146-155, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33107868

RESUMEN

Herein, a label-free photoelectrochemical immunosensor based on a g-C3N4/CdSe nanocomposite was established and applied to detect carcinoembryonic antigen (CEA). The prepared nanocomposite materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), fourier transform infrared spectrometer (FT-IR) and photoluminescence spectroscopy (PL). The results indicate that g-C3N4/CdSe nanocomposite materials were successfully synthesized. In a typical assembly process, the immunosensor was constructed by modifying a fluorine-doped tin oxide (FTO) electrode with poly dimethyl diallyl ammonium chloride (PDDA), the g-C3N4/CdSe nanocomposite, the anti-carcinoembryonic antigen antibody (Ab) and the blocking agent bovine serum albumin (BSA) successively. In the presence of CEA, the photocurrent signal of the prepared immunosensor decreased significantly. Accordingly, under the optimal conditions, a label-free photoelectrochemical immunosensor was established, and it exhibited excellent selectivity and repeatability for CEA detection. The detection limit was 0.21 ng mL-1, and the range was 10 ng mL-1-100 µg mL-1. Simultaneously, the immunosensor also provides a likely sensing device for detecting other protein targets, which is of great significance for early clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio , Nanocompuestos , Compuestos de Selenio , Antígeno Carcinoembrionario , Técnicas Electroquímicas , Inmunoensayo , Espectroscopía Infrarroja por Transformada de Fourier
16.
Bioorg Chem ; 104: 104246, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32911197

RESUMEN

Cryptotanshinone (1), a major bioactive constituent in the traditional Chinese medicinal herb Dan-Shen Salvia miltiorrhiza Bunge, has been reported to possess remarkable pharmacological activities. To improve its bioactivities and physicochemical properties, in the present study, cryptotanshinone (1) was biotransformed with the fungus Cunninghamella elegans AS3.2028. Three oxygenated products (2-4) at C-3 of cryptotanshinone (1) were obtained, among them 2 was a new compound. Their structures were elucidated by comprehensive spectroscopic analysis including HRESIMS, NMR and ECD data. All of the biotransformation products (2-4) were found to inhibit significantly lipopolysaccharide-induced nitric oxide production in BV2 microglia cells with the IC50 values of 0.16-1.16 µM, approximately 2-20 folds stronger than the substrate (1). These biotransformation products also displayed remarkably improved inhibitory effects on the production of inflammatory cytokines (IL-1ß, IL-6, TNF-α, COX-2 and iNOS) in BV-2 cells via targeting TLR4 compared to substrate (1). The underlying mechanism of 2 was elucidated by comparative transcriptome analysis, which suggested that it reduced neuroinflammatory mainly through mitogen-activated protein kinase (MAPK) signaling pathway. Western blotting results revealed that 2 downregulated LPS-induced phosphorylation of JNK, ERK, and p38 in MAPK signaling pathway. These findings provide a basal material for the discovery of candidates in treating Alzheimer's disease.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Inhibidores de la Colinesterasa/farmacología , Cunninghamella/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Fenantrenos/farmacología , Receptor Toll-Like 4/antagonistas & inhibidores , Acetilcolinesterasa/metabolismo , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/metabolismo , Biotransformación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Cunninghamella/química , Relación Dosis-Respuesta a Droga , Electrophorus , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estructura Molecular , Oxígeno/metabolismo , Fenantrenos/química , Fenantrenos/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Receptor Toll-Like 4/metabolismo
17.
Bioorg Chem ; 103: 104192, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32889382

RESUMEN

Structural modification of natural products by biotransformation with fungi is an attractive tool to obtain novel bioactive derivatives. In the present study, cryptotanshinone (1), a quinoid abietane diterpene from traditional Chinese medicine Salvia miltiorrhiza (Danshen), was transformed by two marine-derived fungi. By using Cochliobolus lunatus TA26-46, one new oxygenated and rearranged product (2), containing a 5,6-dihydropyrano[4,3-b]chromene moiety, together with one known metabolite (10), were obtained from the converted broth of cryptotanshinone (1) with the isolated yields of 1.0% and 2.1%, respectively. While, under the action of Aspergillus terreus RA2905, seven new transformation products (3-9) as well as 10 with the fragments of 2-methylpropan-1-ol and oxygenated p-benzoquinone were produced and obtained with the isolated yields of 0.1%-1.3%. The structures of the new compounds were elucidated by comprehensive spectroscopic analysis including High Resolution Electrospray Ionization Mass Spectroscopy (HRESIMS), Nuclear Magnetic Resonance (NMR) and Electronic Circular Dichroism (ECD). The metabolic pathways of cryptotanshinone by these two fungi were presumed to be the opening and rearrangement of furan ring, and/or oxygenation of cyclohexane ring. Cryptotanshinone (1) and its metabolites displayed anti-inflammatory activities against NO production in LPS-stimulated BV-2 cells and antibacterial activities towards methicillin-resistant Staphylococcus aureus. These findings revealed the potential of marine fungi to transform the structures of natural products by biotransformation.


Asunto(s)
Antibacterianos/metabolismo , Antiinflamatorios/metabolismo , Aspergillus/metabolismo , Curvularia/metabolismo , Fenantrenos/metabolismo , Animales , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Biotransformación , Línea Celular , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Fenantrenos/farmacología
18.
Molecules ; 25(17)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867374

RESUMEN

Chemical epigenetic modification on a marine-derived fungus Aspergillus terreus RA2905 using a histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), resulted in a significantly changed metabolic profile. A chemical investigation of its ethyl acetate (EtOAc) extract led to the isolation of a racemate of benzyl furanone racemate (±)-1, which further separated chirally as a pair of new enantiomers, (+)- and (-)-asperfuranone (1), together with two new benzyl pyrones, asperpyranones A (2) and B (3). Their structures were elucidated by analysis of the comprehensive spectroscopic data, including one-dimensional (1D) and two-dimensional (2D) NMR, and HRESIMS. The absolute configurations were determined by electronic circular dichroism (ECD) calculation and single-crystal X-ray crystallographic experiment. The structures with benzyl furanone or benzyl pyrone skeletons were discovered from natural products for the first time. Compounds (±)-1, (+)-1, (-)-1, and 2 displayed the antifungal activities against Candida albicans with MIC values of 32, 16, 64, and 64 µg/mL and PTP1B inhibitory activities with the IC50 values of 45.79, 17.32, 35.50, and 42.32 µM, respectively. Compound 2 exhibited antibacterial activity against Pseudomonas aeruginosa with the MIC value of 32 µg/mL.


Asunto(s)
Antibacterianos , Aspergillus/química , Candida albicans/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pironas , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Estructura Molecular , Pironas/aislamiento & purificación , Pironas/farmacología
19.
Front Microbiol ; 11: 1334, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655528

RESUMEN

Six new sorbicillinoids, trichoreeseione A (1) and B (2), trichodermolide B (3), 13-hydroxy-trichodermolide (4), 24-hydroxy-trichodimerol (5), 15-hydroxy-bisvertinol (7), together with three known analogs, trichodimerol (6), 24-hydroxy-bisvertinol (8), and bisvertinol (9), were isolated from the sponge-derived fungus Trichoderma reesei (HN-2016-018). Their structures including absolute configurations were elucidated by analysis of NMR, MS data, and calculated ECD spectra. Compounds 1 and 2 with a characteristic naphthalene-trione ring were firstly reported in sorbicillinoid family. Compounds 3 and 4 were two rare sorbicillinoids containing a unique bicycle [3.2.1] lactone skeleton, while 3 with a propan-2-one moiety was also recorded first time in this family. Compound 5 displayed cytotoxic activity against A549, MCF-7, and HCT116 cell lines with the IC50 values of 5.1, 9.5, and 13.7 µM, respectively.

20.
Biosens Bioelectron ; 165: 112416, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32729534

RESUMEN

Herein, an ultra-sensitive photoelectrochemical biosensor based on Ti3C2:CdS nanocomposite was established for the selective detection of microRNA159c. Ti3C2:CdS nanocomposites were used as optoelectronic materials because Ti3C2:CdS interaction effectively separates photogenerated electrons and holes, and significantly improves the high photoelectric conversion efficiency. Firstly, Ti3C2:CdS nanocomposite was deposited on the surface of the fluorine-doped tin oxide (FTO) electrode. After the chitosan (CS) was dropped, the SH-miRNA were bonded on the electrode surface via the S-Cd bond. Then 6-mercaptohexanol (MCH) blocked the unbound site, the DNA strand was introduced to hybridize with the target SH-miRNA. At this time, the obtained photocurrent gradually decreases. Subsequently, the photosensitizer TMPyP as signal amplification was modified, the photocurrent increased significantly. The target SH-miRNA was detected based upon the photocurrent change originated from quantities change of TMPyP. Working under the best experimental conditions, the sensing platform had good stability, selectivity, and high sensitivity. The detection range for miRNA159c was 1.0 × 10-6-1.0 × 10-13 mol·L-l, and the detection limit was approximately 33 fmol·L-l. The detection of miRNA159c in human serum provided a huge opportunity to explore the relationship between the abundance of this miRNA and the incidence of breast cancer (BC), and to further achieve effective detection of BC.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Compuestos de Cadmio , Nanocompuestos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Técnicas Electroquímicas , Humanos , Límite de Detección , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...