Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38754822

RESUMEN

Salmonella is a major cause of foodborne diseases worldwide. Conventional rapid assays for detecting Salmonella in real samples often encounter severe matrix interference or detect the limited number of species of a genus, resulting the inaccuracy of detection. In this study, we developed a method that combined phage-based magnetic capture with real time recombinase polymerase amplification (RPA) for the rapid, highly sensitive, and specific detection of Salmonella in milk with an ultra-low detection limit. The Felix O-1 phage-conjugated magnetic beads (O-1 pMBs) synthesized in this method showed excellent capture ability for Salmonella spp. and ideal specificity for non-Salmonella strains. After O-1 pMBs-based magnetic separation, the limit of detection (LOD) of the real time RPA assay was 50 cfu/mL in milk samples, which was significantly increased by a magnitude of 3-4 orders. The method exhibited a high sensitivity (compatibility) of 100% (14/14) for all tested Salmonella serotype strains and an ideal specificity (exclusivity) of 100% (7/7) for the tested non-Salmonella strains. The entire detection process including Salmonella capture, DNA extraction, and real time RPA detection was completed within 1.5 h. Furthermore, milk samples spiked with 10 cfu/25 mL of Salmonella were detected positive after cultured in buffered peptone water for only 3 h. Therefore, the proposed method could be an alternative for the rapid and accurate detection of Salmonella.

2.
Anal Bioanal Chem ; 416(4): 983-992, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38127274

RESUMEN

Zearalenone (ZEN), produced by Fusarium species, is a potential risk to human health. Traditional enzyme-linked immunosorbent assay (ELISA) is restricted due to low sensitivity for the detection of ZEN. Herein, enzyme nanocomposites (ALP-SA-Bio-ssDNA, ASBD) were prepared with the self-assembly strategy based on streptavidin-labeled alkaline phosphatase (SA-ALP) and dual-biotinylated ssDNA (B2-ssDNA). The enzyme nanocomposites improved the loading amount of ALP and catalyzed more ascorbic acid 2-phosphate to generate ascorbic acid (AA). Subsequently, Cu2+ could be reduced to copper nanoclusters (CuNCs) having strong fluorescence signal by AA with poly T. Benefiting from the high enzyme load of nanocomposites and the strong signal of CuNCs, the fluorescence ELISA was successfully established for the detection of ZEN. The proposed method exhibited lower limit of detection (0.26 ng mL-1) than traditional ELISA (1.55 ng mL-1). The recovery rates ranged from 92.00% to 108.38% (coefficient of variation < 9.50%) for the detection of zearalenone in corn and wheat samples. In addition, the proposed method exhibited no cross reaction with four other mycotoxins. This proposed method could be used in trace detection for food safety.


Asunto(s)
Nanocompuestos , Zearalenona , Humanos , Zearalenona/análisis , Cobre/análisis , Contaminación de Alimentos/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , ADN de Cadena Simple , Límite de Detección
3.
Food Chem ; 428: 136789, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423110

RESUMEN

A simple and rapid colorimetric method for the detection of melamine in milk samples is described. Polythymidine oligonucleotide was adsorbed on to the surface of gold nanoparticles (AuNPs), protecting it from aggregation. In the presence of melamine, polythymidine oligonucleotide combined with melamine formed a double-strand DNA-like structure, allowing AuNPs aggregation. In the presence of positively charged SYBR Green I (SG I), AuNPs were further aggregated. In the presence of melamine and SG I, aggregation of AuNPs was synergistic. Thus, in this principle, melamine can be detected visually. Plasmon resonance peak changes enabled detection of melamine quantitatively using UV-vis spectroscopy. The limit of detection for this colorimetric method was 16 µg L-1 with a good linear range from 19.5 µg L-1 to 1.25 × 103 µg L-1, and detection took only 1 min. The method was successfully applied for detection of melamine in milk samples.


Asunto(s)
Nanopartículas del Metal , Animales , Nanopartículas del Metal/química , Oro/química , Leche/química , Triazinas/análisis , Colorimetría/métodos , Oligonucleótidos , Límite de Detección
4.
J Dairy Sci ; 106(9): 5930-5939, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37474367

RESUMEN

Escherichia coli O157:H7 poses a threat to humans. Traditional ELISA is not a sensitive method for the detection of E. coli O157:H7. Here, an efficient method was designed for improving the load capacity of alkaline phosphatase (ALP) with streptavidin scaffolded DNA tetrad (SS-DNAt). With more ALP, more ascorbic acid 2-phosphate was catalyzed to ascorbic acid that was used to synthesize fluorescence poly adenine-thymine-templated copper nanoclusters. Based on SS-DNAt, fluorescence ELISA was successfully proposed for improving the sensitivity for detection of E. coli O157:H7 in milk samples. The method showed a linear range of 104 to 106 cfu/mL. The limit of detection of fluorescence ELISA was 3.75 × 103 cfu/mL and 6.16-fold better than that of traditional ELISA. The recovery of the fluorescence ELISA was 86.7 to 93.6% with the coefficient of variation of 5.6 to 10.5% in milk. This method could be used to detect hazardous material in food.


Asunto(s)
Escherichia coli O157 , Humanos , Animales , Estreptavidina , Ensayo de Inmunoadsorción Enzimática/veterinaria , Leche , ADN , Microbiología de Alimentos
5.
Sci Total Environ ; 865: 161352, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36596422

RESUMEN

Cracks and pores are considered as major sources of radon. Cement is widely used as a grouting material in mines, tunnels, and other projects for reinforcement, seepage prevention, and water plugging. This paper mainly experimentally studied the correlation between the radon exhalation rate of the porous medium after grouting and the sand grain diameter, grouting pressure, and slurry water-cement ratio. The pore characteristics of the samples before and after grouting were also studied based on the low field nuclear magnetic resonance (LF-NMR). The findings of the study show that the porosity of samples increases after the superfine cement solidification with an increase in the water-cement ratio, and the radon exhalation rate is proportional to porosity, the radon exhalation rate increases by 0.0005 Bq·m-2/s at W/C = 1.5, and by 0.0017 Bq·m-2/s at W/C = 2 increases, in comparison to the W/C = 1.The radon exhalation rate of porous media gradually increased after grouting in response to an increase in grouting pressure and the water-cement ratio. The radon exhalation rate of the porous media with larger pores was relatively higher and exhibited a positive correlation with the volume of micropores in porous media,the correlations of coarse, medium and fine media are 0.815, 0.826, and 0.859. The change in pore structure has an influence on radon exhalation. Although grouting changes the pore structure and reduces the connectivity between internal pores, the micropores generated after cement slurry solidification improves the radon exhalation rate by providing new channels, When the water-cement ratio is 1.5 and the grouting pressure is 1.5 MPa, the radon exhalation rate of porous media is 0.00273 Bq·m-2/s. The research results serve as a reference basis for the evaluation of the impact of rock masses on grouting reinforcement and pore sealing.

6.
Sci Total Environ ; 862: 160865, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521600

RESUMEN

Radon is of great significance as a tracer for the detection of coal fires due to its distinct variations in radon exhalation properties while heating. The research on radon exhalation performance through pore structure is still in its early stages. In this paper, the pore structure and radon exhalation characteristics of heat-treated limestone are studied using indoor tests such as nuclear magnetic and radon measurements. The study's results demonstrate that the radon exhalation rate of limestone initially increases gradually, followed by a steady decline and subsequent increase with the increase in temperature. The radon exhalation rate at 800 °C reaches 2.42 times that at room temperature. The pore structure change within limestone strongly correlates with the radon exhalation rate. The pore volume of micropores (<0.1 µm) plays an essential role in the radon exhalation capacity, which is directly related to the fractal dimension of micropore structure in the heated limestone. The study's findings can be used to identify coal fires.


Asunto(s)
Contaminantes Radiactivos del Aire , Monitoreo de Radiación , Radón , Radón/análisis , Contaminantes Radiactivos del Aire/análisis , Espiración , Materiales de Construcción , Calor
7.
J Hazard Mater ; 431: 128467, 2022 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-35220122

RESUMEN

Because of the rigid crystalline structure and recalcitrant components, maize straw returned is slowly decomposed in soils. Straw residues are substantially accumulated in soils and pose detrimental impacts to crop plantation. Here we report the pretreatments of urea and NaOH (USH) to enhance maize straw decomposition in the field. The USH reagents interacted synergistically to destruct straw, mainly through breaking the rigid hydrogen bonding network and chemically hydrolyzing recalcitrant lignin. The synergy was evident for the USH reagents containing 6-8% urea and 0.1-1% NaOH under various temperature conditions (-20 °C to 25 °C). The USH (7%/0.1%) pretreatment resulted in notable enhancement (37%) of straw decomposition in the field within 6 months, superior to current biological-based treatments (6-28%). Moreover, this pretreatment posed no influence on the adsorption of straw residues collected at the early stage of decomposition (27 days) toward five commonly used herbicides. Those straw residues collected on 67 days and later exhibited high adsorption capacity, indicated by 0.5- to 4-folded increases in Kd values. Additionally, the impacts to soil pH and bacterial/fungal community were negligible. The USH pretreatments thus have practical interests in mitigating accumulation of straw residues in straw-returned soils.


Asunto(s)
Herbicidas , Suelo , Herbicidas/química , Hidróxido de Sodio , Suelo/química , Urea , Zea mays/química
8.
J Hazard Mater ; 418: 126213, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34111743

RESUMEN

Outspread straw return practice leads to accumulation of structurally diverse organic materials in soils, including raw straw and straw residues. This practice provides a supplementary source of organic sorbents for compounds released into soils. However, effects of accumulated straw materials on sorption of compounds in soils remain poorly understood. Here we report that straw materials accumulated in soils display changing chemical structure and properties during decomposition, the majority of which distribute in exponential growth or decay manners with decomposition extents of materials. Sorption of straw materials toward 40 commonly used pesticides and antibiotics takes a compromise of decreasing crystalline index and increasing water absorption capacity of the sorbent materials during decomposition. This tradeoff in sorption leads to case-specific sorption trends of organic compounds in soils with straw return practice, following a composite linear sorption model of mixed soils and straw materials. The predictive model shows that relatively hydrophobic, hydrogen bond acceptor-rich chemicals (about 22.5% of the 40 compounds) display decreasing sorption capacity in organic matter-rich and/or relatively acidic soils with straw return. This finding may contradict the notion that crop straw return usually increases sorption and decreases leaching of compounds in soils.


Asunto(s)
Plaguicidas , Contaminantes del Suelo , Adsorción , Antibacterianos , Suelo , Contaminantes del Suelo/análisis , Zea mays
9.
J Hazard Mater ; 407: 124806, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33341570

RESUMEN

Cadmium (Cd) is one of the most toxic substances released in the environment. Cd-contaminated soils usually have a large pool of bioavailable Cd species and lead to excessive Cd accumulation in planted cereal crops. Treatment methods for stable immobilization of Cd in soils are desirable. Here we reported that facile combinations of thiosulfate (STS) and zerovalent iron (ZVI) reinforced Cd immobilization in soils and reduced Cd accumulation in wheat. STS mildly activated Cd in soils through the formation of soluble Cd(S2O3)x complexes, whereas intermediates of STS (e.g., sulfate and sulfides) and ZVI synergically facilitated immobilization of Cd in soils. The synergy was ascribed to the facilitated formation of FeOOH with high Cd-binding affinity and formation of stable sulfate-Cd-FeOOH complexes and poorly available CdSx. STS-ZVI treatments increased residual Cd in soils by 101-123% and decreased Cd accumulation in wheat shoots by 13-68%, depending on chemical compositions and doses of binary reagents. Field applications of STS and ZVI (0.06-0.11 kg/m2) demonstrated 24-39% reductions of grain Cd.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...