Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiome ; 10(1): 18, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35081990

RESUMEN

BACKGROUND: Given the lack of genetic background, the source tracking unknown individuals of fish species with both farmed and wild populations often cannot be robustly achieved. The gut microbiome, which is shaped by both deterministic and stochastic processes, can serve as a molecular marker of fish host source tracking, particularly as an alternative to the yet-to-be-established host genetic marker. A candidate for testing the feasibility is the large yellow croaker, Larimichthys crocea, which is carnivorous and ranks the top mariculture fish in China. Wild resource of this fish was depleted decades ago and might have potential problematic estimation because of escaping of farmed individuals. RESULTS: The rectums of wild (n = 212) and farmed (n = 79) croakers from multiple batches were collected for the profiling of their gut bacterial communities. The farmed individuals had a higher alpha diversity and lower bacterial load than the wild individuals. The gut microbiota of the two sources exhibited divergence and high inter-batch variation, as featured by the dominance of Psychrobacter spp. in the wild group. Predicted functional capacity of the gut microbiome and representative isolates showed differences in terms of host source. This difference can be linked to the potential diet divergence between farmed and wild fishes. The non-stochastic distribution pattern of the core gut microbiota of the wild and farmed individuals supports the feasibility of microbiota-based host source tracking via the machine learning algorithm. A random forest classifier based on the divergence and non-stochastic assembly of the gut microbiome was robust in terms of host source tracking the individuals from all batches of croaker, including a newly introduced batch. CONCLUSIONS: Our study revealed the divergence of gut microbiota and related functional profiles between wild and farmed croakers. For the first time, with representative datasets and non-stochastic patterns, we have verified that gut microbiota can be robustly applied to the tracking of host source even in carnivorous fish. Video abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Perciformes , Animales , Bacterias , Peces , Microbioma Gastrointestinal/genética , Perciformes/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...