Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4371, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902582

RESUMEN

Stable isotope paleoaltimetry that reconstructs paleoelevation requires stable isotope (δD or δ18O) values to follow the altitude effect. Some studies found that the δD or δ18O values of surface isotopic carriers in some regions increase with increasing altitude, which is defined as an "inverse altitude effect" (IAE). The IAE directly contradicts the basic theory of stable isotope paleoaltimetry. However, the causes of the IAE remain unclear. Here, we explore the mechanisms of the IAE from an atmospheric circulation perspective using δD in water vapor on a global scale. We find that two processes cause the IAE: (1) the supply of moisture with higher isotopic values from distant source regions, and (2) intense lateral mixing between the lower and mid-troposphere along the moisture transport pathway. Therefore, we caution that the influences of those two processes need careful consideration for different mountain uplift stages before using stable isotope palaeoaltimetry.


Asunto(s)
Altitud , Disentimientos y Disputas , Isótopos de Oxígeno/análisis
2.
Isotopes Environ Health Stud ; 58(3): 229-246, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35503680

RESUMEN

Serving as a medium between source water and cellulose, leaf water contributes to the isotope ratios (δ18O, δ2H) of plant organic matter, which can be used for paleoclimate reconstruction. This study is the first to examine the diurnal variations in the δ18O and δ2H of leaf water on the southern Tibetan Plateau. The δ18O and δ2H of leaf water were relatively low when precipitation events occurred. In particular, 18O and 2H of leaf water became extremely depleted 5 h after the precipitation event. Our findings demonstrate that precipitation can modify the isotope ratios of leaf water from external and internal causes. First, precipitation events affect meteorological elements, lead to decreases in leaf transpiration, and immediately weaken the isotope enrichment of leaf water ('rapid effect' of precipitation). Second, precipitation events affect the internal plant-soil water cycle process, causing the plant to preferentially use deeper soil water, and the corresponding isotope ratios of leaf water exhibit extremely low values 5 h after precipitation events ('delay effect' of precipitation). This study suggests that researchers need to be cautious in separating the signals of precipitation and hydrological processes when interpreting isotope records preserved in tree-ring cellulose archives from the Tibetan Plateau.


Asunto(s)
Hojas de la Planta , Agua , Celulosa , Isótopos de Oxígeno/análisis , Hojas de la Planta/química , Suelo , Tibet , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA