Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1015827

RESUMEN

Glutamate excitotoxicity mediated by metabotropic glutamate receptor 1 (mGluR1) overexpression or overactivation plays an important role in the development of Parkinson's disease (PD). Although clinical trials support the therapeutic potential of certain mGluR negative allosteric modulators (NAMs), there are still some limitations of precise modulation of mGluR using NAMs. Thus, the identification of small molecules or endogenous genes that facilitate mGluR1 modulation might be potentially beneficial for PD treatment. We determined the role of interacting partner cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) in overactivated mGluR1-mediated cell apoptosis and signaling pathway in vitro and in vivo. HEK293 cells were used as an experimental tool to directly examine the interaction between CAL and mGluR1. We found that agonist of mGluR1 significantly enhanced the interaction between CAL and mGluR1 (P< 0. 05). Furthermore, CAL suppressed overactivated mGluR1-induced cell apoptosis and the activation of mGluR1 downstream signaling pathways. CAL overexpression relieved rotenone-induced neuron death (P< 0. 001) by inhibiting the activation of mGluR1-mediated signaling pathways in rotenone-induced rat model of PD. This study may reveal a new mechanism of mGluR1 activity regulation, and hopefully provide a novel molecular mechanism for the nervous system related diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...