Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Physiol (Oxf) ; 240(5): e14137, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38502065

RESUMEN

BACKGROUND: Voltage-sensing phosphatase contains a structurally conserved S1-S4-based voltage-sensor domain, which undergoes a conformational transition in response to membrane potential change. Unlike that of channels, it is functional even in isolation and is therefore advantageous for studying the transition mechanism, but its nature has not yet been fully elucidated. This study aimed to address whether the cytoplasmic N-terminus and S1 exhibit structural change. METHODS: Anap, an environment-sensitive unnatural fluorescent amino acid, was site-specifically introduced to the voltage sensor domain to probe local structural changes by using oocyte voltage clamp and photometry. Tetramethylrhodamine was also used to probe some extracellularly accessible positions. In total, 51 positions were investigated. RESULTS: We detected robust voltage-dependent signals from widely distributed positions including N-terminus and S1. In addition, response to hyperpolarization was observed at the extracellular end of S1, reflecting the local structure flexibility of the voltage-sensor domain in the down-state. We also found that the mechanical coupling between the voltage-sensor and phosphatase domains affects the depolarization-induced optical signals but not the hyperpolarization-induced signals. CONCLUSIONS: These results fill a gap between the previous interpretations from the structural and biophysical approaches and should provide important insights into the mechanisms of the voltage-sensor domain transition as well as its coupling with the effector.


Asunto(s)
Potenciales de la Membrana , Animales , Potenciales de la Membrana/fisiología , Oocitos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Citoplasma/metabolismo , Xenopus laevis , Dominios Proteicos , Técnicas de Placa-Clamp
2.
Proc Natl Acad Sci U S A ; 119(26): e2200364119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35733115

RESUMEN

Voltage-sensing phosphatase (VSP) consists of a voltage sensor domain (VSD) and a cytoplasmic catalytic region (CCR), which is similar to phosphatase and tensin homolog (PTEN). How the VSD regulates the innate enzyme component of VSP remains unclear. Here, we took a combined approach that entailed the use of electrophysiology, fluorometry, and structural modeling to study the electrochemical coupling in Ciona intestinalis VSP. We found that two hydrophobic residues at the lowest part of S4 play an essential role in the later transition of VSD-CCR coupling. Voltage clamp fluorometry and disulfide bond locking indicated that S4 and its neighboring linker move as one helix (S4-linker helix) and approach the hydrophobic spine in the CCR, a structure located near the cell membrane and also conserved in PTEN. We propose that the hydrophobic spine operates as a hub for translating an electrical signal into a chemical one in VSP.


Asunto(s)
Dominio Catalítico , Potenciales de la Membrana , Monoéster Fosfórico Hidrolasas , Dominios y Motivos de Interacción de Proteínas , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Citoplasma/enzimología , Interacciones Hidrofóbicas e Hidrofílicas , Oocitos , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Xenopus laevis
3.
J Biol Chem ; 296: 100783, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34000300

RESUMEN

Voltage-gated sodium channels (Nav1s) are responsible for the initiation and propagation of action potentials in neurons, muscle, and endocrine cells. Many clinically used drugs such as local anesthetics and antiarrhythmics inhibit Nav1s, and a variety of inherited human disorders are caused by mutations in Nav1 genes. Nav1s consist of the main α subunit and several auxiliary ß subunits. Detailed information on the structure-function relationships of Nav1 subunits has been obtained through heterologous expression experiments and analyses of protein structures. The basic properties of Nav1s, including their gating and ion permeation, were classically described in the squid giant axon and other invertebrates. However, heterologous functional expression of Nav1s from marine invertebrates has been unsuccessful. Ascidians belong to the Urochordata, a sister group of vertebrates, and the larval central nervous system of ascidians shows a similar plan to that of vertebrates. Here, we report the biophysical properties of ascidian Ciona Nav1 (CiNav1a) heterologously expressed in Xenopus oocytes. CiNav1a exhibited tetrodotoxin-insensitive sodium currents with rapid gating kinetics of activation and inactivation. Furthermore, consistent with the fact that the Ciona genome lacks orthologous genes to vertebrate ß subunits, the human ß1 subunit did not influence the gating properties when coexpressed with CiNav1a. Interestingly, CiNav1a contains an ankyrin-binding motif in the II-III linker, which can be targeted to the axon initial segment of mammalian cortical neurons. Our findings provide a platform to gain insight into the evolutionary and biophysical properties of Nav1s, which are important for the development of targeted therapeutics.


Asunto(s)
Ciona intestinalis/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Ciona intestinalis/genética , Expresión Génica , Filogenia , Sodio/metabolismo , Canales de Sodio Activados por Voltaje/genética , Xenopus
4.
Elife ; 72018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30484774

RESUMEN

Voltage-sensing phosphatases (VSP) contain a voltage sensor domain (VSD) similar to that of voltage-gated ion channels but lack a pore-gate domain. A VSD in a VSP regulates the cytoplasmic catalytic region (CCR). However, the mechanisms by which the VSD couples to the CCR remain elusive. Here we report a membrane interface (named 'the hydrophobic spine'), which is essential for the coupling of the VSD and CCR. Our molecular dynamics simulations suggest that the hydrophobic spine of Ciona intestinalis VSP (Ci-VSP) provides a hinge-like motion for the CCR through the loose membrane association of the phosphatase domain. Electrophysiological experiments indicate that the voltage-dependent phosphatase activity of Ci-VSP depends on the hydrophobicity and presence of an aromatic ring in the hydrophobic spine. Analysis of conformational changes in the VSD and CCR suggests that the VSP has two states with distinct enzyme activities and that the second transition depends on the hydrophobic spine.


Asunto(s)
Citoplasma/genética , Activación del Canal Iónico/genética , Membranas/química , Monoéster Fosfórico Hidrolasas/química , Secuencia de Aminoácidos/genética , Animales , Dominio Catalítico/genética , Ciona intestinalis/química , Citoplasma/química , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Monoéster Fosfórico Hidrolasas/genética , Dominios Proteicos
5.
Sci Rep ; 7: 42398, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28205521

RESUMEN

We report development of the first genetically encoded bioluminescent indicator for membrane voltage called LOTUS-V. Since it is bioluminescent, imaging LOTUS-V does not require external light illumination. This allows bidirectional optogenetic control of cellular activity triggered by Channelrhodopsin2 and Halorhodopsin during voltage imaging. The other advantage of LOTUS-V is the robustness of a signal-to-background ratio (SBR) wherever it expressed, even in the specimens where autofluorescence from environment severely interferes fluorescence imaging. Through imaging of moving cardiomyocyte aggregates, we demonstrated the advantages of LOTUS-V in long-term imaging are attributable to the absence of phototoxicity, and photobleaching in bioluminescent imaging, combined with the ratiometric aspect of LOTUS-V design. Collectively LOTUS-V extends the scope of excitable cell control and simultaneous voltage phenotyping, which should enable applications in bioscience, medicine and pharmacology previously not possible.


Asunto(s)
Expresión Génica , Genes Reporteros , Mediciones Luminiscentes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Imagen Molecular , Optogenética , Animales , Línea Celular , Células Cultivadas , Fenómenos Electrofisiológicos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cinética , Mediciones Luminiscentes/métodos , Proteínas Luminiscentes/química , Modelos Moleculares , Imagen Molecular/métodos , Optogenética/métodos , Conformación Proteica
6.
Biochim Biophys Acta ; 1858(12): 2972-2983, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27637155

RESUMEN

The voltage-gated proton channel, Hv1, is expressed in blood cells, airway epithelium, sperm and microglia, playing important roles in diverse biological contexts including phagocytosis or sperm maturation through its regulation of membrane potential and pH. The gene encoding Hv1, HVCN1, is widely found across many species and is also conserved in unicellular organisms such as algae or dinoflagellates where Hv1 plays role in calcification or bioluminescence. Voltage-gated proton channels exhibit a large variation of activation rate among different species. Here we identify an Hv1 ortholog from sea urchin, Strongylocentrotus purpuratus, SpHv1. SpHv1 retains most of key properties of Hv1 but exhibits 20-60 times more rapid activation kinetics than mammalian orthologs upon heterologous expression in HEK293T cells. Comparison between SpHv1 and mHv1 highlights novel roles of the third transmembrane segment S3 in activation gating of Hv1.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos/fisiología , Erizos de Mar/metabolismo , Animales , Células HEK293 , Humanos , Canales Iónicos/química , Ratones
7.
Proc Natl Acad Sci U S A ; 113(27): 7521-6, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27330112

RESUMEN

The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane.


Asunto(s)
Monoéster Fosfórico Hidrolasas/metabolismo , beta-Alanina/análogos & derivados , Secuencia de Aminoácidos , Animales , Ciona intestinalis , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/genética , Conformación Proteica , Xenopus
8.
Mol Cell ; 58(1): 186-93, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25773597

RESUMEN

Crystallization of proteins may occur in the cytosol of a living cell, but how a cell responds to intracellular protein crystallization remains unknown. We developed a variant of coral fluorescent protein that forms diffraction-quality crystals within mammalian cells. This expression system allowed the direct determination of its crystal structure at 2.9 Å, as well as observation of the crystallization process and cellular responses. The micron-sized crystal, which emerged rapidly, was a pure assembly of properly folded ß-barrels and was recognized as an autophagic cargo that was transferred to lysosomes via a process involving p62 and LC3. Several lines of evidence indicated that autophagy was not required for crystal nucleation or growth. These findings demonstrate that in vivo protein crystals can provide an experimental model to study chemical catalysis. This knowledge may be beneficial for structural biology studies on normal and disease-related protein aggregation.


Asunto(s)
Antozoos/química , Citosol/metabolismo , Proteínas Fluorescentes Verdes/química , Lisosomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autofagia , Cristalización , Cristalografía por Rayos X , Citosol/ultraestructura , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Lisosomas/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Neuronas/metabolismo , Neuronas/ultraestructura , Cultivo Primario de Células , Pliegue de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Sequestosoma-1 , Difracción de Rayos X
9.
Front Mol Neurosci ; 7: 93, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25505870

RESUMEN

Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its ß-barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3°) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential.

10.
Physiol Rep ; 2(7)2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25347851

RESUMEN

Voltage-sensing phosphatases (VSPs) share the molecular architecture of the voltage sensor domain (VSD) with voltage-gated ion channels and the phosphoinositide phosphatase region with the phosphatase and tensin homolog (PTEN), respectively. VSPs enzymatic activities are regulated by the motions of VSD upon depolarization. The physiological role of these proteins has remained elusive, and insights may be gained by investigating biological variations in different animal species. Urodele amphibians are vertebrates with potent activities of regeneration and also show diverse mechanisms of polyspermy prevention. We cloned cDNAs of VSPs from the testes of two urodeles; Hynobius nebulosus and Cynops pyrrhogaster, and compared their expression and voltage-dependent activation. Their molecular architecture is highly conserved in both Hynobius VSP (Hn-VSP) and Cynops VSP (Cp-VSP), including the positively-charged arginine residues in the S4 segment of the VSD and the enzymatic active site for substrate binding, yet the C-terminal C2 domain of Hn-VSP is significantly shorter than that of Cp-VSP and other VSP orthologs. RT-PCR analysis showed that gene expression pattern was distinct between two VSPs. The voltage sensor motions and voltage-dependent phosphatase activities were investigated electrophysiologically by expression in Xenopus oocytes. Both VSPs showed "sensing" currents, indicating that their voltage sensor domains are functional. The phosphatase activity of Cp-VSP was found to be voltage dependent, as shown by its ability to regulate the conductance of coexpressed GIRK2 channels, but Hn-VSP lacked such phosphatase activity due to the truncation of its C2 domain.

11.
Biochim Biophys Acta ; 1838(7): 1730-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24642225

RESUMEN

The development of a high performance protein probe for the measurement of membrane potential will allow elucidation of spatiotemporal regulation of electrical signals within a network of excitable cells. Engineering such a probe requires a functional screen of many candidates. Although the glass-microelectrode technique generally provides an accurate measure of a given test probe, throughputs are limited. In this study, we focused on an approach that uses the membrane potential changes induced by an external electric field in a geometrically simple mammalian cell. For quantitative evaluation of membrane voltage probes that rely on the structural transition of the S1-S4 voltage sensor domain and hence have non-linear voltage dependencies, it was crucial to introduce exogenous inwardly rectifying potassium conductance to reduce cell-to-cell variability in resting membrane potentials. Importantly, the addition of the exogenous conductance drastically altered the profile of the field-induced potential. Following a site-directed random mutagenesis and the rapid screen, we identified a mutant of a voltage probe Mermaid, exhibiting positively shifted voltage sensitivity. Due to its simplicity, the current approach will be applicable under a microfluidic configuration to carry out an efficient screen. Additionally, we demonstrate another interesting aspect of the field-induced optical signals, ability to visualize electrical couplings between cells.


Asunto(s)
Potenciales de la Membrana/fisiología , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Línea Celular Tumoral , Conductividad Eléctrica , Células HEK293 , Humanos , Ratones , Microelectrodos , Datos de Secuencia Molecular , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Alineación de Secuencia
12.
Biophys J ; 105(1): 108-15, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23823229

RESUMEN

The voltage-sensor domain (VSD) is a functional module that undergoes structural transitions in response to membrane potential changes and regulates its effectors, thereby playing a crucial role in amplifying and decoding membrane electrical signals. Ion-conductive pore and phosphoinositide phosphatase are the downstream effectors of voltage-gated channels and the voltage-sensing phosphatase, respectively. It is known that upon transition, the VSD generally acts on the region C-terminal to S4. However, whether the VSD also induces any structural changes in the N-terminal region of S1 has not been addressed directly. Here, we report the existence of such an N-terminal effect. We used two distinct optical reporters-one based on the Förster resonance energy transfer between a pair of fluorescent proteins, and the other based on fluorophore-labeled HaloTag-and studied the behavior of these reporters placed at the N-terminal end of the monomeric VSD derived from voltage-sensing phosphatase. We found that both of these reporters were affected by the VSD transition, generating voltage-dependent fluorescence readouts. We also observed that whereas the voltage dependencies of the N- and C-terminal effects appear to be tightly coupled, the local structural rearrangements reflect the way in which the VSD is loaded, demonstrating the flexible nature of the VSD.


Asunto(s)
Canales Iónicos/química , Canales Iónicos/metabolismo , Fenómenos Ópticos , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Membrana Celular/metabolismo , Conductividad Eléctrica , Transferencia Resonante de Energía de Fluorescencia , Potenciales de la Membrana , Modelos Moleculares , Estructura Terciaria de Proteína , Rodaminas/química
13.
J Physiol ; 591(18): 4427-37, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23836686

RESUMEN

One of the most awaited techniques in modern physiology is the sensitive detection of spatiotemporal electrical activity in a complex network of excitable cells. The use of genetically encoded voltage probes has been expected to enable such analysis. However, in spite of recent progress, existing probes still suffer from low signal amplitude and/or kinetics too slow to detect fast electrical activity. Here, we have developed an improved voltage probe named Mermaid2, which is based on the voltage-sensor domain of the voltage-sensing phosphatase from Ciona intestinalis and Förster energy transfer between a pair of fluorescent proteins. In mammalian cells, Mermaid2 permits ratiometric readouts of fractional changes of more than 50% over a physiologically relevant voltage range with fast kinetics, and it was used to follow a train of action potentials at frequencies of up to 150 Hz. Mermaid2 was also able to detect single action potentials and subthreshold voltage responses in hippocampal neurons in vitro, in addition to cortical electrical activity evoked by sound stimuli in single trials in living mice.


Asunto(s)
Potenciales de Acción , Neuroimagen Funcional/métodos , Optogenética/métodos , Monoéster Fosfórico Hidrolasas/genética , Animales , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Neuronas/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Ratas , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...