Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(11): e0293834, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37917788

RESUMEN

Sugarcane is one of the major agricultural crops with high economic importance in Thailand. Periodic waterlogging has a long-term negative effect on sugarcane development, soil properties, and microbial diversity, impacting overall sugarcane production. Yet, the microbial structure in periodically waterlogged sugarcane fields across soil compartments and growth stages in Thailand has not been documented. This study investigated soil and rhizosphere microbial communities in a periodic waterlogged field in comparison with a normal field in a sugarcane plantation in Ratchaburi, Thailand, using 16S rRNA and ITS amplicon sequencing. Alpha diversity analysis revealed comparable values in periodic waterlogged and normal fields across all growth stages, while beta diversity analysis highlighted distinct microbial community profiles in both fields throughout the growth stages. In the periodic waterlogged field, the relative abundance of Chloroflexi, Actinobacteria, and Basidiomycota increased, while Acidobacteria and Ascomycota decreased. Beneficial microbes such as Arthrobacter, Azoarcus, Bacillus, Paenibacillus, Pseudomonas, and Streptomyces thrived in the normal field, potentially serving as biomarkers for favorable soil conditions. Conversely, phytopathogens and growth-inhibiting bacteria were prevalent in the periodic waterlogged field, indicating unfavorable conditions. The co-occurrence network in rhizosphere of the normal field had the highest complexity, implying increased sharing of resources among microorganisms and enhanced soil biological fertility. Altogether, this study demonstrated that the periodic waterlogged field had a long-term negative effect on the soil microbial community which is a key determining factor of sugarcane growth.


Asunto(s)
Microbiota , Saccharum , Suelo/química , Saccharum/genética , ARN Ribosómico 16S/genética , Tailandia , Bacterias/genética , Microbiota/genética , Grano Comestible/genética , Microbiología del Suelo , Rizosfera
2.
Microorganisms ; 11(9)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37763973

RESUMEN

Beauveria bassiana degenerates after repeated subcultures, demonstrating declined conidiation and insect virulence. The target of rapamycin (TOR) kinase conserved among eukaryotes is the master regulator of cellular physiology and is likely involved in culture degeneration. Indeed, the levels of TOR-associated proteins increase over successive subcultures. Here, CRISPR/Cas9 locus engineering introduced the inducible Tet-On promoter upstream of the TOR kinase 2 gene tor2 in B. bassiana. The mutant PTet-Ontor2 'T41' was verified for the Tet-On integration via PCR analyses and provided a model for evaluating the fungal phenotypes according to the tor2 expression levels, induced by doxycycline (Dox) concentrations. At 0 µg·mL-1 of Dox, T41 had 68% of the wild type's (WT) tor2 expression level, hampered radial growth and relatively lower levels of oxidative stress tolerance, conidiation and virulence against Spodoptera exigua, compared to those under the presence of Dox. A low dose of Dox at 0.1-1 µg·mL-1 induced tor2 upregulation in T41 by up to 91% compared to 0 µg·mL-1 of Dox, resulting in significant increases in radial growth by 8-10% and conidiation by 8-27%. At 20 µg·mL-1 of Dox, which is 132% higher than T41's tor2 expression level at 0 µg·mL-1 of Dox, T41 showed an increased oxidative stress tolerance and a decrease in growth inhibition under iron replete by 62%, but its conidiation significantly dropped by 47% compared to 0 µg·mL-1 of Dox. T41 at 20 µg·mL-1 of Dox had a strikingly increased virulence (1.2 day lower LT50) against S. exigua. The results reflect the crucial roles of TOR kinase in the vegetative growth, conidiation, pathogenicity and oxidative stress tolerance in B. bassiana. Since TOR upregulation is correlated with culture degeneration in multiple subcultures, our data suggest that TOR signaling at relatively low levels plays an important role in growth and development, but at moderate to high levels could contribute to some degenerated phenotypes, e.g., those found in successive subcultures.

3.
PLoS One ; 18(2): e0281505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36749783

RESUMEN

A novel methylotrophic bacterium designated as NMS14P was isolated from the root of an organic coffee plant (Coffea arabica) in Thailand. The 16S rRNA sequence analysis revealed that this new isolate belongs to the genus Methylobacterium, and its novelty was clarified by genomic and comparative genomic analyses, in which NMS14P exhibited low levels of relatedness with other Methylobacterium-type strains. NMS14P genome consists of a 6,268,579 bp chromosome, accompanied by a 542,519 bp megaplasmid and a 66,590 bp plasmid, namely pNMS14P1 and pNMS14P2, respectively. Several genes conferring plant growth promotion are aggregated on both chromosome and plasmids, including phosphate solubilization, indole-3-acetic acid (IAA) biosynthesis, cytokinins (CKs) production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, sulfur-oxidizing activity, trehalose synthesis, and urea metabolism. Furthermore, pangenome analysis showed that NMS14P possessed the highest number of strain-specific genes accounting for 1408 genes, particularly those that are essential for colonization and survival in a wide array of host environments, such as ABC transporter, chemotaxis, quorum sensing, biofilm formation, and biosynthesis of secondary metabolites. In vivo tests have supported that NMS14P significantly promoted the growth and development of maize, chili, and sugarcane. Collectively, NMS14P is proposed as a novel plant growth-promoting Methylobacterium that could potentially be applied to a broad range of host plants as Methylobacterium-based biofertilizers to reduce and ultimately substitute the use of synthetic agrochemicals for sustainable agriculture.


Asunto(s)
Methylobacterium , Saccharum , Zea mays/genética , Saccharum/genética , Methylobacterium/genética , ARN Ribosómico 16S/genética , Grano Comestible/genética , Filogenia
4.
Viruses ; 14(9)2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36146727

RESUMEN

The pathogenic fungus Colletotrichum gloeosporioides causes anthracnose disease, which is an important fungal disease affecting the production of numerous crops around the world. The presence of mycoviruses, however, may have an impact on the pathogenicity of the fungal host. Here, we describe a double-stranded RNA (dsRNA) mycovirus, which was isolated from a field strain of C. gloeosporioides, Ssa-44.1. The 2939 bp genome sequence comprises two open reading frames (ORFs) that encode for a putative protein and RNA-dependent RNA polymerase (RdRp). The Ssa-44.1 mycovirus is a member of the unclassified mycovirus family named Colletotrichum gloeosporioides RNA virus 1 strain Ssa-44.1 (CgRV1-Ssa-44.1), which has a phylogenetic similarity to Colletotrichum gleosporioides RNA virus 1 (CgRV1), which was isolated from citrus leaves in China. In C. gloeosporioides, CgRV1-Ssa-44.1 was shown to be linked to hypovirulence. CgRV1-Ssa-44.1 has a low spore transfer efficiency but can successfully spread horizontally to isogenic virus-free isolates. Furthermore, CgRV1-Ssa-44.1 had a strong biological control impact on C. gloeosporioides on mango plants. This study is the first to describe a hypovirulence-associated mycovirus infecting C. gloeosporioides, which has the potential to assist with anthracnose disease biological management.


Asunto(s)
Colletotrichum , Virus Fúngicos , Mangifera , Virus ARN , Colletotrichum/genética , Filogenia , Enfermedades de las Plantas/microbiología , ARN Bicatenario/genética , ARN Polimerasa Dependiente del ARN/genética , Tailandia
5.
Sci Rep ; 11(1): 19624, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34608174

RESUMEN

The putative ferricrocin synthetase gene ferS in the fungal entomopathogen Beauveria bassiana BCC 2660 was identified and characterized. The 14,445-bp ferS encodes a multimodular nonribosomal siderophore synthetase tightly clustered with Fusarium graminearum ferricrocin synthetase. Functional analysis of this gene was performed by disruption with the bar cassette. ΔferS mutants were verified by Southern and PCR analyses. HPLC and TLC analyses of crude extracts indicated that biosynthesis of ferricrocin was abolished in ΔferS. Insect bioassays surprisingly indicated that ΔferS killed the Spodoptera exigua larvae faster (LT50 59 h) than wild type (66 h). Growth and developmental assays of the mutant and wild type demonstrated that ΔferS had a significant increase in germination under iron depletion and radial growth and a decrease in conidiation. Mitotracker staining showed that the mitochondrial activity was enriched in ΔferS under both iron excess and iron depletion. Comparative transcriptomes between wild type and ΔferS indicated that the mutant was increased in the expression of eight cytochrome P450 genes and those in iron homeostasis, ferroptosis, oxidative stress response, ergosterol biosynthesis, and TCA cycle, compared to wild type. Our data suggested that ΔferS sensed the iron excess and the oxidative stress and, in turn, was up-regulated in the antioxidant-related genes and those in ergosterol biosynthesis and TCA cycle. These increased biological pathways help ΔferS grow and germinate faster than the wild type and caused higher insect mortality than the wild type in the early phase of infection.


Asunto(s)
Beauveria/crecimiento & desarrollo , Beauveria/metabolismo , Ferricromo/análogos & derivados , Interacciones Huésped-Patógeno , Insectos/microbiología , Hierro/metabolismo , Animales , Beauveria/clasificación , Beauveria/patogenicidad , Biología Computacional , Ferricromo/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Homeostasis , Mutación , Estrés Oxidativo , Filogenia , Virulencia/genética
6.
Front Microbiol ; 12: 623799, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828538

RESUMEN

Converting conventional farms to organic systems to improve ecosystem health is an emerging trend in recent decades, yet little is explored to what extent and how this process drives the taxonomic diversity and functional capacity of above-ground microbes. This study was, therefore, conducted to investigate the effects of agricultural management, i.e., organic, transition, and conventional, on the structure and function of sugarcane phyllosphere microbial community using the shotgun metagenomics approach. Comparative metagenome analysis exhibited that farming practices strongly influenced taxonomic and functional diversities, as well as co-occurrence interactions of phyllosphere microbes. A complex microbial network with the highest connectivity was observed in organic farming, indicating strong resilient capabilities of its microbial community to cope with the dynamic environmental stressors. Organic farming also harbored genus Streptomyces as the potential keystone species and plant growth-promoting bacteria as microbial signatures, including Mesorhizobium loti, Bradyrhizobium sp. SG09, Lactobacillus plantarum, and Bacillus cellulosilyticus. Interestingly, numerous toxic compound-degrading species were specifically enriched in transition farming, which might suggest their essential roles in the transformation of conventional to organic farming. Moreover, conventional practice diminished the abundance of genes related to cell motility and energy metabolism of phyllosphere microbes, which could negatively contribute to lower microbial diversity in this habitat. Altogether, our results demonstrated the response of sugarcane-associated phyllosphere microbiota to specific agricultural managements that played vital roles in sustainable sugarcane production.

7.
Fungal Biol ; 122(2-3): 156-171, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29458719

RESUMEN

The quality of Beauveria bassiana conidia directly affects the virulence against insects. In this study, continuous subculturing of B. bassiana on both rice grains and potato dextrose agar (PDA) resulted in 55 and 49 % conidial yield reduction after 12 passages and 68 and 60 % virulence reduction after 20 and 12 passages at four d post-inoculation, respectively. The passage through Tenebrio molitor and Spodoptera exigua restored the virulence of rice and PDA subcultures, respectively. To explore the molecular mechanisms underlying the conidial quality and the decline of virulence after multiple subculturing, we investigated the conidial proteomic changes. Successive subculturing markedly increased the protein levels in oxidative stress response, autophagy, amino acid homeostasis, and apoptosis, but decreased the protein levels in DNA repair, ribosome biogenesis, energy metabolism, and virulence. The nitro blue tetrazolium assay verified that the late subculture's colony and conidia had a higher oxidative stress level than the early subculture. A 2A-type protein phosphatase and a Pleckstrin homology domain protein Slm1, effector proteins of the target of rapamycin (TOR) complex 1 and 2, respectively, were dramatically increased in the late subculture. These results suggest that TOR signalling might be associated with ageing in B. bassiana late subculture, in turn affecting its physiological characteristics and virulence.


Asunto(s)
Beauveria/patogenicidad , Proteómica/métodos , Esporas Fúngicas/patogenicidad , Animales , Autofagia , Beauveria/química , Beauveria/crecimiento & desarrollo , Ritmo Circadiano , Replicación del ADN , Estrés Oxidativo , Fenotipo , Transducción de Señal/fisiología , Spodoptera , Esporas Fúngicas/química , Serina-Treonina Quinasas TOR/fisiología , Virulencia
8.
FEMS Microbiol Lett ; 362(2): 1-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25670702

RESUMEN

Iron is an essential element for life. However, the iron overload can be toxic. Here, we investigated the significant increase of tenellin and iron-tenellin complex production in ferricrocin-deficient mutants of Beauveria bassiana. Our chemical analysis indicated that the ferricrocin-deficient mutants T1, T3 and T5 nearly abolished ferricrocin production. In turn, these mutants had significant accumulation of iron-tenellin complex in their mycelia at 247-289 mg g(-1) cell dry weight under iron-replete condition. Both tenellin and iron-tenellin complex were not detected in the wild-type under such condition. Mass analysis of the mutants' crude extracts demonstrated that tenellin formed a 3:1 complex with iron in the absence of ferricrocin. The unexpected link between ferricrocin and tenellin biosynthesis in ferricrocin-deficient mutants could be a survival strategy during iron-mediated oxidative stress.


Asunto(s)
Beauveria/metabolismo , Ferricromo/análogos & derivados , Hierro/metabolismo , Piridonas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sideróforos/metabolismo , Beauveria/química , Beauveria/genética , Beauveria/ultraestructura , Cromatografía Líquida de Alta Presión , Ferricromo/química , Ferricromo/metabolismo , Espectrometría de Masas , Mutación , Piridonas/química , Interferencia de ARN
9.
Microbiology (Reading) ; 154(Pt 4): 995-1006, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18375793

RESUMEN

Intensive study of gene diversity of bioactive compounds in a wood-rot fungus, Xylaria sp. BCC1067, has made it possible to identify polyketides and nonribosomal peptides (NRPs) unaccounted for by conventional chemical screening methods. Here we report the complete nonribosomal peptide synthetase (NRPS) gene responsible for the biosynthesis of an NRP, bassianolide, using a genetic approach. Isolation of the bassianolide biosynthetic gene, nrpsxy, was achieved using degenerate primers specific to the adenylation domain of NRPS. The complete ORF of nrpsxy is 10.6 kb in length. Based on comparisons with other known NRPSs, the domain arrangement of NRPSXY is most likely to be C-A-T-C-A-M-T-T-C-R. The other ORF found upstream of nrpsxy, designated efxy, is 1.8 kb in length and shows high similarity to members of the major facilitator superfamily of transporters. Functional analysis of the nrpsxy gene was conducted by gene disruption, and the missing metabolite in the mutant was identified. Chemical analysis revealed the structure of the metabolite to be a cyclooctadepsipeptide, bassianolide, which has been found in other fungi. A bioassay of bassianolide revealed a wide range of biological activities other than insecticidal uses, which have been previously reported, thus making bassianolide an interesting candidate for future structural modification. This study is the first evidence for a gene involved in the biosynthesis of bassianolide.


Asunto(s)
Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Péptidos Cíclicos/metabolismo , Xylariales/enzimología , Animales , Antibacterianos/aislamiento & purificación , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antineoplásicos/aislamiento & purificación , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antituberculosos/aislamiento & purificación , Antituberculosos/metabolismo , Antituberculosos/farmacología , Línea Celular Tumoral , Chlorocebus aethiops , Cromatografía Líquida de Alta Presión , Cartilla de ADN/genética , ADN de Hongos/química , ADN de Hongos/genética , Eliminación de Gen , Humanos , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Insercional , Sistemas de Lectura Abierta , Péptidos Cíclicos/aislamiento & purificación , Péptidos Cíclicos/farmacología , Reacción en Cadena de la Polimerasa/métodos , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Madera , Xylariales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...