Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 171, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886860

RESUMEN

BACKGROUND: There is a significant demand for intermediate-scale bioreactors in academic and industrial institutions to produce cells for various applications in drug screening and/or cell therapy. However, the application of these bioreactors in cultivating hiPSC-derived immune cells and other blood cells is noticeably lacking. To address this gap, we have developed a xeno-free and chemically defined intermediate-scale bioreactor platform, which allows for the generation of standardized human iPSC-derived hematopoietic organoids and subsequent continuous production of macrophages (iPSC-Mac). METHODS: We describe a novel method for intermediate-scale immune cell manufacturing, specifically the continuous production of functionally and phenotypically relevant macrophages that are harvested on weekly basis for multiple weeks. RESULTS: The continuous production of standardized human iPSC-derived macrophages (iPSC-Mac) from 3D hematopoietic organoids also termed hemanoids, is demonstrated. The hemanoids exhibit successive stage-specific embryonic development, recapitulating embryonic hematopoiesis. iPSC-Mac were efficiently and continuously produced from three different iPSC lines and exhibited a consistent and reproducible phenotype, as well as classical functionality and the ability to adapt towards pro- and anti-inflammatory activation stages. Single-cell transcriptomic analysis revealed high macrophage purity. Additionally, we show the ability to use the produced iPSC-Mac as a model for testing immunomodulatory drugs, exemplified by dexamethasone. CONCLUSIONS: The novel method demonstrates an easy-to-use intermediate-scale bioreactor platform that produces prime macrophages from human iPSCs. These macrophages are functionally active and require no downstream maturation steps, rendering them highly desirable for both therapeutic and non-therapeutic applications.


Asunto(s)
Reactores Biológicos , Células Madre Pluripotentes Inducidas , Macrófagos , Organoides , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Organoides/citología , Organoides/metabolismo , Diferenciación Celular , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/instrumentación , Hematopoyesis
2.
Front Immunol ; 14: 1127485, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251386

RESUMEN

A single population of interferon-regulatory factor 8 (Irf8)-dependent conventional dendritic cell (cDC type1) is considered to be responsible for both immunogenic and tolerogenic responses depending on the surrounding cytokine milieu. Here, we challenge this concept of an omnipotent single Irf8-dependent cDC1 cluster through analysis of pulmonary cDCs at single cell resolution. We report existence of a pulmonary cDC1 cluster lacking Xcr1 with an immunogenic signature that clearly differs from the Xcr1 positive cDC1 cluster. The Irf8+Batf3+Xcr1- cluster expresses high levels of pro-inflammatory genes associated with antigen presentation, migration and co-stimulation such as Ccr7, Cd74, MHC-II, Ccl5, Il12b and Relb while, the Xcr1+ cDC1 cluster expresses genes corresponding to immune tolerance mechanisms like Clec9a, Pbx1, Cadm1, Btla and Clec12a. In concordance with their pro-inflammatory gene expression profile, the ratio of Xcr1- cDC1s but not Xcr1+cDC1 is increased in the lungs of allergen-treated mice compared to the control group, in which both cDC1 clusters are present in comparable ratios. The existence of two distinct Xcr1+ and Xcr1- cDC1 clusters is furthermore supported by velocity analysis showing markedly different temporal patterns of Xcr1- and Xcr1+cDC1s. In summary, we present evidence for the existence of two different cDC1 clusters with distinct immunogenic profiles in vivo. Our findings have important implications for DC-targeting immunomodulatory therapies.


Asunto(s)
Células Dendríticas , Pulmón , Animales , Ratones , Análisis de Secuencia de ARN
3.
iScience ; 26(4): 106475, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37096049

RESUMEN

Chronic airway infections with Pseudomonas aeruginosa are the major co-morbidity in most people with cystic fibrosis (CF) sustained by neutrophils as the major drivers of lung inflammation, damage, and remodeling. Phagocytosis assays were performed with clonal consortia of longitudinal P. aeruginosa airway isolates collected from people with CF since the onset of lung colonization until patient's death or replacement by another clone. The extra- and intracellular abundance of individual strains was assessed by deep amplicon sequencing of strain-specific single nucleotide variants in the bacterial genome. The varied microevolution of the accessory genome of the P. aeruginosa clones during mild and severe courses of infection corresponded with a differential persistence of clonal progeny in the neutrophil phagosome. By simultaneously exposing the ancestor and its progeny to the same habitat, the study recapitulated the time lapse of the temporal change of the fitness of the clone to survive in neutrophils.

4.
Eur J Immunol ; 53(12): e2249980, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36938688

RESUMEN

Antigen-presenting cells (APCs) are critical cells bridging innate and adaptive immune responses by taking up, processing, and presenting antigens to naïve T cells. At steady state, APCs thus control both tissue homeostasis and the induction of tolerance. In allergies however, APCs drive a Th2-biased immune response that is directed against otherwise harmless antigens from the environment. The main types of APCs involved in the induction of allergy are dendritic cells, monocytes, and macrophages. However, these cell types can be further divided into local, tissue-specific populations that differ in their phenotype, migratory capacity, T-cell activating potential, and production of effector molecules. Understanding if distinct populations of APCs contribute to either tissue-specific immune tolerance, allergen sensitization, or allergic inflammation will allow us to better understand disease pathology and develop targeted treatment options for different stages of allergic disease. Therefore, this review describes the main characteristics, phenotypes, and effector molecules of the APCs involved in the induction of allergen-specific Th2 responses in affected barrier sites, such as the skin, nose, lung, and gastrointestinal tract. Furthermore, we highlight open questions that remain to be addressed to fully understand the contribution of different APCs to allergic disease.


Asunto(s)
Células Presentadoras de Antígenos , Hipersensibilidad , Humanos , Alérgenos , Linfocitos T , Fenotipo
6.
Cells ; 11(19)2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36230920

RESUMEN

Optimal pre-analytical conditions for blood sample processing and isolation of selected cell populations for subsequent transcriptomic and epigenomic studies are required to obtain robust and reproducible results. This pilot study was conducted to investigate the potential effects of timing of CD4+ T-cell processing from peripheral blood of atopic and non-atopic adults on their transcriptomic and epigenetic profiles. Two heparinized blood samples were drawn from each of three atopic and three healthy individuals. For each individual, CD4+ T-cells were isolated from the first blood sample within 2 h (immediate) or from the second blood sample after 24 h storage (delayed). RNA sequencing (RNA-Seq) and histone H3K27 acetylation chromatin immunoprecipitation sequencing (ChIP-Seq) analyses were performed. A multiplicity of genes was shown to be differentially expressed in immediately processed CD4+ T-cells from atopic versus healthy subjects. These differences disappeared when comparing delayed processed cells due to a drastic change in expression levels of atopy-related genes in delayed processed CD4+ T-cells from atopic donors. This finding was further validated on the epigenomic level by examining H3K27 acetylation profiles. In contrast, transcriptomic and epigenomic profiles of blood CD4+ T-cells of healthy donors remained rather unaffected. Taken together, for successful transcriptomics and epigenomics studies, detailed standard operation procedures developed on the basis of samples from both healthy and disease conditions are implicitly recommended.


Asunto(s)
Epigenómica , Transcriptoma , Adulto , Linfocitos T CD4-Positivos/metabolismo , Epigenómica/métodos , Histonas/metabolismo , Humanos , Proyectos Piloto , Manejo de Especímenes , Linfocitos T/metabolismo , Transcriptoma/genética
7.
Front Pharmacol ; 13: 1021317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304163

RESUMEN

Background: Different asthma phenotypes are driven by molecular endotypes. A Th1-high phenotype is linked to severe, therapy-refractory asthma, subclinical infections and neutrophil inflammation. Previously, we found neutrophil granulocytes (NGs) from asthmatics exhibit decreased chemotaxis towards leukotriene B4 (LTB4), a chemoattractant involved in inflammation response. We hypothesized that this pattern is driven by asthma in general and aggravated in a Th1-high phenotype. Methods: NGs from asthmatic nd healthy children were stimulated with 10 nM LTB4/100 nM N-formylmethionine-leucyl-phenylalanine and neutrophil migration was documented following our prior SiMA (simplified migration assay) workflow, capturing morphologic and dynamic parameters from single-cell tracking in the images. Demographic, clinical and serum cytokine data were determined in the ALLIANCE cohort. Results: A reduced chemotactic response towards LTB4 was confirmed in asthmatic donors regardless of inhaled corticosteroid (ICS) treatment. By contrast, only NGs from ICS-treated asthmatic children migrate similarly to controls with the exception of Th1-high donors, whose NGs presented a reduced and less directed migration towards the chemokines. ICS-treated and Th1-high asthmatic donors present an altered surface receptor profile, which partly correlates with migration. Conclusions: Neutrophil migration in vitro may be affected by ICS-therapy or a Th1-high phenotype. This may be explained by alteration of receptor expression and could be used as a tool to monitor asthma treatment.

8.
Clin Transl Immunology ; 11(6): e1398, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757569

RESUMEN

Objectives: The contribution of adaptive vs. innate lymphocytes to IL-17A and IL-22 secretion at the end stage of chronic lung diseases remains largely unexplored. In order to uncover tissue- and disease-specific secretion patterns, we compared production patterns of IL-17A and IL-22 in three different human end-stage lung disease entities. Methods: Production of IL-17A, IL-22 and associated cytokines was assessed in supernatants of re-stimulated lymphocytes by multiplex assays and multicolour flow cytometry of conventional T cells, iNKT cells, γδ T cells and innate lymphoid cells in bronchial lymph node and lung tissue from patients with emphysema (n = 19), idiopathic pulmonary fibrosis (n = 14) and cystic fibrosis (n = 23), as well as lung donors (n = 17). Results: We detected secretion of IL-17A and IL-22 by CD4+ T cells, CD8+ T cells, innate lymphoid cells, γδ T cells and iNKT cells in all end-stage lung disease entities. Our analyses revealed disease-specific contributions of individual lymphocyte subpopulations to cytokine secretion patterns. We furthermore found the high levels of microbial detection in CF samples to associate with a more pronounced IL-17A signature upon antigen-specific and unspecific re-stimulation compared to other disease entities and lung donors. Conclusion: Our results show that both adaptive and innate lymphocyte populations contribute to IL-17A-dependent pathologies in different end-stage lung disease entities, where they establish an IL-17A-rich microenvironment. Microbial colonisation patterns and cytokine secretion upon microbial re-stimulation suggest that pathogens drive IL-17A secretion patterns in end-stage lung disease.

9.
Nat Commun ; 13(1): 2022, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440634

RESUMEN

Tertiary lymphoid structures (TLS) are lymph node-like immune cell clusters that emerge during chronic inflammation in non-lymphoid organs like the kidney, but their origin remains not well understood. Here we show, using conditional deletion strategies of the canonical Notch signaling mediator Rbpj, that loss of endothelial Notch signaling in adult mice induces the spontaneous formation of bona fide TLS in the kidney, liver and lung, based on molecular, cellular and structural criteria. These TLS form in a stereotypical manner around parenchymal arteries, while secondary lymphoid structures remained largely unchanged. This effect is mediated by endothelium of blood vessels, but not lymphatics, since a lymphatic endothelial-specific targeting strategy did not result in TLS formation, and involves loss of arterial specification and concomitant acquisition of a high endothelial cell phenotype, as shown by transcriptional analysis of kidney endothelial cells. This indicates a so far unrecognized role for vascular endothelial cells and Notch signaling in TLS initiation.


Asunto(s)
Estructuras Linfoides Terciarias , Animales , Células Endoteliales , Endotelio Vascular , Inflamación , Ratones , Receptores Notch/genética , Transducción de Señal
10.
Mol Ther ; 29(3): 1324-1334, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33279724

RESUMEN

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to impaired ion transport in epithelial cells. Although lung failure due to chronic infection is the major comorbidity in individuals with cystic fibrosis, the role of CFTR in non-epithelial cells has not been definitively resolved. Given the important role of host defense cells, we evaluated the Cftr deficiency in pulmonary immune cells by hematopoietic stem cell transplantation in cystic fibrosis mice. We transplanted healthy bone marrow stem cells and could reveal a stable chimerism of wild-type cells in peripheral blood. The outcome of stem cell transplantation and the impact of healthy immune cells were evaluated in acute Pseudomonas aeruginosa airway infection. In this study, mice transplanted with wild-type cells displayed better survival, lower lung bacterial numbers, and a milder disease course. This improved physiology of infected mice correlated with successful intrapulmonary engraftment of graft-derived alveolar macrophages, as seen by immunofluorescence microscopy and flow cytometry of graft-specific leucocyte surface marker CD45 and macrophage marker CD68. Given the beneficial effect of hematopoietic stem cell transplantation and stable engraftment of monocyte-derived CD68-positive macrophages, we conclude that replacement of mutant Cftr macrophages attenuates airway infection in cystic fibrosis mice.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Macrófagos/inmunología , Mutación , Infecciones por Pseudomonas/terapia , Pseudomonas aeruginosa/aislamiento & purificación , Animales , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Células Epiteliales/microbiología , Humanos , Pulmón/microbiología , Macrófagos/microbiología , Ratones , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiología
11.
Immun Inflamm Dis ; 8(4): 512-522, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32737949

RESUMEN

BACKGROUND: Glycosylation is a common and complex type of protein posttranslational modification. Altered glycosylation of immunoglobulins in autoimmune diseases has led to the "altered glycan hypothesis" postulating existence of a unique glycan signature on immune cells and extracellular proteins characterized by site-specific relative abundances of individual glycan structures and glycosylation patterns. However, it is not clear how glycosylation on leukocyte subpopulations differ between states of health or inflammation. HYPOTHESIS: Glycosphingolipid patterns on immune cells of forkhead-box-P3-deficient scurfy mice differs from those on wild-type immune cells. METHODS: T cells and dendritic cells were isolated from spleens of either wild-type or age-matched scurfy mice. Glycosphingolipids of CD4+ T cells and splenic dendritic cells from wild-type and scurfy mice were then analyzed by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection (xCGE-LIF). In addition, flow cytometry and ChipCytometry were used to access expression patterns of various C-type lectin receptors on antigen-presenting cells from various organs of both wild-type and scurfy mice. RESULTS: We, hereby report differential expression of glycosphingolipids in health and under inflammatory conditions as reflected in wild-type and scurfy mice. Furthermore, we observed that the absence of functional regulatory T cells correlated with elevated expression of CLEC-7A and CD205 but a reduction in levels of CLEC12A and CD206 on antigen-presenting cells. CONCLUSION: We hereby show that the absence of functional regulatory T cells affects expression pattern and quantities of glycosphingolipids on immune cells. Thus, glycosphingolipids could serve as biomarkers for mapping genetical and homeostatic perturbances such as those resulting from a diseased condition.


Asunto(s)
Linfocitos T Reguladores , Animales , Femenino , Factores de Transcripción Forkhead , Glicoesfingolípidos , Lectinas Tipo C , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Eur J Immunol ; 50(7): 1019-1033, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32142593

RESUMEN

IL-17 is associated with different phenotypes of asthma, however, it is not fully elucidated how it influences induction and maintenance of asthma and allergy. In order to determine the role of IL-17 in development of allergic asthma, we used IL-17A/F double KO (IL-17A/F KO) and WT mice with or without neutralization of IL-17 in an experimental allergic asthma model and analyzed airway hyperresponsiveness, lung inflammation, T helper cell polarization, and DCs influx and activation. We report that the absence of IL-17 reduced influx of DCs into lungs and lung draining LNs. Compared to WT mice, IL-17A/F KO mice or WT mice after neutralization of IL-17A showed reduced airway hyperresponsiveness, eosinophilia, mucus hypersecretion, and IgE levels. DCs from draining LNs of allergen-challenged IL-17A/F KO mice showed a reduction in expression of migratory and costimulatory molecules CCR7, CCR2, MHC-II, and CD40 compared to WT DCs. Moreover, in vivo stimulation of adoptively transferred antigen-specific cells was attenuated in lung-draining LNs in the absence of IL-17. Thus, we report that IL-17 enhances airway DC activation, migration, and function. Consequently, lack of IL-17 leads to reduced antigen-specific T cell priming and impaired development of experimental allergic asthma.


Asunto(s)
Alérgenos/inmunología , Presentación de Antígeno , Asma/inmunología , Bronquios/inmunología , Movimiento Celular/inmunología , Células Dendríticas/inmunología , Interleucina-17/inmunología , Ganglios Linfáticos/inmunología , Alérgenos/genética , Animales , Asma/genética , Asma/patología , Bronquios/patología , Movimiento Celular/genética , Células Dendríticas/patología , Interleucina-17/genética , Ganglios Linfáticos/patología , Ratones , Ratones Noqueados
13.
BMC Bioinformatics ; 21(1): 28, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992182

RESUMEN

BACKGROUND: Despite the significant contribution of transcriptomics to the fields of biological and biomedical research, interpreting long lists of significantly differentially expressed genes remains a challenging step in the analysis process. Gene set enrichment analysis is a standard approach for summarizing differentially expressed genes into pathways or other gene groupings. Here, we explore an alternative approach to utilizing gene sets from curated databases. We examine the method of deriving custom gene sets which may be relevant to a given experiment using reference data sets from previous transcriptomics studies. We call these data-derived gene sets, "gene signatures" for the biological process tested in the previous study. We focus on the feasibility of this approach in analyzing immune-related processes, which are complicated in their nature but play an important role in the medical research. RESULTS: We evaluate several statistical approaches to detecting the activity of a gene signature in a target data set. We compare the performance of the data-derived gene signature approach with comparable GO term gene sets across all of the statistical tests. A total of 61 differential expression comparisons generated from 26 transcriptome experiments were included in the analysis. These experiments covered eight immunological processes in eight types of leukocytes. The data-derived signatures were used to detect the presence of immunological processes in the test data with modest accuracy (AUC = 0.67). The performance for GO and literature based gene sets was worse (AUC = 0.59). Both approaches were plagued by poor specificity. CONCLUSIONS: When investigators seek to test specific hypotheses, the data-derived signature approach can perform as well, if not better than standard gene-set based approaches for immunological signatures. Furthermore, the data-derived signatures can be generated in the cases that well-defined gene sets are lacking from pathway databases and also offer the opportunity for defining signatures in a cell-type specific manner. However, neither the data-derived signatures nor standard gene-sets can be demonstrated to reliably provide negative predictions for negative cases. We conclude that the data-derived signature approach is a useful and sometimes necessary tool, but analysts should be weary of false positives.


Asunto(s)
Perfilación de la Expresión Génica , Leucocitos/metabolismo , Animales , Curaduría de Datos , Bases de Datos Genéticas , Humanos , Leucocitos/inmunología , Ratones , Sensibilidad y Especificidad
14.
Front Immunol ; 9: 2458, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30429849

RESUMEN

Tissue macrophages are important components of tissue homeostasis and inflammatory pathologies. In the peritoneal cavity, resident macrophages interact with a variety of immune cells and can exhibit broad range of phenotypes and functions. Forkhead-box-P3 (FOXP3)+ regulatory T cells (Tregs) play an indispensable role in maintaining immunological tolerance, yet whether, and how the pathological condition that results from the lack of functional Tregs affects peritoneal macrophages (PM) is largely unknown. We used FOXP3-deficient scurfy (Sf) mice to investigate PM behavior in terms of the missing crosstalk with Tregs. Here, we report that Treg deficiency induced a marked increase in PM numbers, which was reversed after adoptive transfer of CD4+ T cells or neutralization of macrophage colony-stimulating factor. Ex vivo assays demonstrated a pro-inflammatory state of PM from Sf mice and signs of excessive activation and exhaustion. In-depth immunophenotyping of Sf PM using single-cell chipcytometry and transcriptome analysis revealed upregulation of molecules involved in the initiation of innate and adaptive immune responses. Moreover, upon transfer to non-inflammatory environment or after injection of CD4+ T cells, PM from Sf mice reprogramed their functional phenotype, indicating remarkable plasticity. Interestingly, frequencies, and immune polarization of large and small PM subsets were dramatically changed in the FOXP3-deficient mice, suggesting distinct origin and specialized function of these subsets in inflammatory conditions. Our findings demonstrate the significant impact of Tregs in shaping PM identity and dynamics. A better understanding of PM function in the Sf mouse model may have clinical implication for the treatment of immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, and other forms of immune-mediated enteropathies.


Asunto(s)
Macrófagos Peritoneales/inmunología , Cavidad Peritoneal/citología , Linfocitos T Reguladores/inmunología , Traslado Adoptivo , Animales , Proliferación Celular , Células Cultivadas , Femenino , Factores de Transcripción Forkhead/genética , Recuento de Linfocitos , Factor Estimulante de Colonias de Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/trasplante
15.
Artículo en Inglés | MEDLINE | ID: mdl-29904012

RESUMEN

BACKGROUND: In 2015, a high number of refugees with largely unknown health statuses immigrated to Western Europe. To improve caretaking strategies, we assessed the prevalence of latent tuberculosis infection (LTBI) in a refugee cohort. METHODS: Interferon-Gamma release assays (IGRA, Quantiferon) were performed in n = 232 inhabitants of four German refugee centers in the summer of 2015. RESULTS: Most refugees were young, male adults. Overall, IGRA testing was positive in 17.9% (95% CI = 13.2⁻23.5%) of subjects. Positivity rates increased with age (0% <18 years versus 46.2% >50 years). Age was the only factor significantly associated with a positive IGRA in multiple regression analysis including gender, C reactive protein, hemoglobin, leukocyte, and thrombocyte count and lymphocyte, monocyte, neutrophil, basophil, and eosinophil fraction. For one year change in age, the odds are expected to be 1.06 times larger, holding all other variables constant (p = 0.015). CONCLUSION: Observed LTBI frequencies are lower than previously reported in similar refugee cohorts. However, as elderly people are at higher risk for developing active tuberculosis, the observed high rate of LTBI in senior refugees emphasizes the need for new policies on the detection and treatment regimens in this group.


Asunto(s)
Tuberculosis Latente/diagnóstico , Tuberculosis Latente/epidemiología , Refugiados/estadística & datos numéricos , Adolescente , Adulto , Factores de Edad , Anciano , Niño , Estudios de Cohortes , Femenino , Alemania/epidemiología , Humanos , Ensayos de Liberación de Interferón gamma , Masculino , Persona de Mediana Edad , Prevalencia , Factores Sexuales , Prueba de Tuberculina , Adulto Joven
16.
Exp Lung Res ; 44(3): 127-136, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29677457

RESUMEN

PURPOSE: To study and isolate lung cells by flow cytometry, enzymatic digestion and generation of single cell suspensions is required. This significantly influences expression of cellular epitopes and protocols need to be adapted for the best isolation and subsequent analysis of specific cellular subsets. MATERIALS AND METHODS: We optimized protocols for the simultaneous isolation and characterization of specific human and murine lung cell types. For alveolar epithelial cells (AEC), a primarily dispase based digestion method and for leukocytes, a primarily collagenase based technique was adapted. Protocols were applied in parallel in either single experimental mice or human lung specimens. RESULTS: Optimized dispase/DNase digestion yielded a high percentage of Epcam+CD45-CD31- AEC as assessed by flow cytometry. Epcam+CD45-CD3-CD11b-CD11c-CD16/32-CD19-CD31-F4/80- AEC were readily sortable with high purity and typical morphology and function upon in vitro stimulation with lipopolysaccharide or respiratory-syncytial-virus (RSV) infection. To analyze lung leukocytes, specimens were digested with an adapted collagenase/DNase protocol yielding high percentages of viable leukocytes with typical morphology, function, and preserved subset specific leukocyte markers. Both protocols could be applied simultaneously in a single experimental mouse post mortem. Application of both digestion methods in primary human lung specimens yielded similar results with high proportions of Epcam+CD45- human AEC after dispase/DNase digestion and preservation of human T cell epitopes after collagenase/DNase digestion. CONCLUSION: The here described protocols were optimized for the simple and efficient isolation of murine and human lung cells. In contrast to previously described techniques, they permit simultaneous in-depth characterization of pulmonary epithelial cells and leukocyte subsets such as T helper, cytotoxic T, and B cells from one sample. As such, they may help to comprehensively and sustainably characterize murine and human lung specimens and facilitate studies on the role of lung immune cells in different respiratory pathologies.


Asunto(s)
Protocolos Clínicos/normas , Células Epiteliales/citología , Leucocitos/citología , Animales , Colagenasas/metabolismo , Desoxirribonucleasas/metabolismo , Endopeptidasas/metabolismo , Humanos , Pulmón/citología , Ratones , Proteolisis
17.
J Allergy Clin Immunol ; 141(2): 685-696.e6, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28601684

RESUMEN

BACKGROUND: Allergic asthma is a chronic lung disease resulting from inappropriate immune responses to environmental antigens. Early tolerance induction is an attractive approach for primary prevention of asthma. OBJECTIVE: We analyzed the mechanisms of perinatal tolerance induction to allergens, with particular focus on the role of B cells in preconception and early intrauterine immune priming. METHODS: Wild-type (WT) and B cell-deficient mice received ovalbumin (OVA) intranasally before mating. Their offspring were analyzed in a murine model of allergic airway inflammation. RESULTS: Although antigen application before conception protected WT progeny from allergy, it aggravated allergic airway inflammation in B cell-deficient offspring. B-cell transfer restored protection, demonstrating the crucial role of B cells in perinatal tolerance induction. Effective diaplacentar allergen transfer was detectable in pregnant WT mice but not in pregnant B-cell knockout dams, and antigen concentrations in WT amniotic fluid (AF) were higher than in IgG-free AF of B cell-deficient dams. Application of OVA/IgG immune complexes during pregnancy boosted OVA uptake by fetal dendritic cells (DCs). Fetal DCs in human subjects and mice expressed strikingly higher levels of Fcγ receptors compared with DCs from adults and were highly efficient in taking up OVA/IgG immune complexes. Moreover, murine fetal DCs effectively primed antigen-specific forkhead box P3+ regulatory T cells after in vitro coincubation with OVA/IgG-containing AF. CONCLUSION: Our data support a decisive role for B cells and immunoglobulins during in utero tolerance priming. These findings improve the understanding of perinatal immunity and might support the development of effective primary prevention strategies for allergy and asthma in the future.


Asunto(s)
Asma/inmunología , Linfocitos B/inmunología , Tolerancia Inmunológica , Intercambio Materno-Fetal/inmunología , Animales , Asma/genética , Asma/patología , Asma/prevención & control , Linfocitos B/patología , Células Dendríticas/inmunología , Células Dendríticas/patología , Modelos Animales de Enfermedad , Femenino , Inmunoglobulina G/inmunología , Intercambio Materno-Fetal/genética , Ratones , Ratones Transgénicos , Embarazo
18.
Sci Rep ; 7(1): 15336, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29127369

RESUMEN

Because Th17-polarized airway inflammation correlates with poor control in bronchial asthma and is a feature of numerous other difficult-to-treat inflammatory lung diseases, new therapeutic approaches for this type of airway inflammation are necessary. We assessed different licensed anti-inflammatory agents with known or expected efficacy against Th17-polarization in mouse models of Th17-dependent airway inflammation. Upon intravenous transfer of in vitro derived Th17 cells and intranasal challenge with the corresponding antigen, we established acute and chronic murine models of Th17-polarised airway inflammation. Consecutively, we assessed the efficacy of methylprednisolone, roflumilast, azithromycin, AM80 and rapamycin against acute or chronic Th17-dependent airway inflammation. Quantifiers for Th17-associated inflammation comprised: bronchoalveolar lavage (BAL) differential cell counts, allergen-specific cytokine and immunoglobulin secretion, as well as flow cytometric phenotyping of pulmonary inflammatory cells. Only rapamycin proved effective against acute Th17-dependent airway inflammation, accompanied by increased plasmacytoid dendritic cells (pDCs) and reduced neutrophils as well as reduced CXCL-1 levels in BAL. Chronic Th17-dependent airway inflammation was unaltered by rapamycin treatment. None of the other agents showed efficacy in our models. Our results demonstrate that Th17-dependent airway inflammation is difficult to treat with known agents. However, we identify rapamycin as an agent with inhibitory potential against acute Th17-polarized airway inflammation.


Asunto(s)
Asma/inmunología , Terapia de Inmunosupresión , Sirolimus/farmacología , Células Th17/inmunología , Traslado Adoptivo , Animales , Asma/tratamiento farmacológico , Asma/patología , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Células Th17/patología
19.
Clin Immunol ; 178: 79-85, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28161409

RESUMEN

Chronic mucocutaneous candidiasis, characterized by persistent or recurrent fungal infections, represents the clinical hallmark in gain-of-function (GOF) signal transducer and activator of transcription 1 (STAT1) mutation carriers. Several cases of intracranial aneurysms have been reported in patients with GOF STAT1 mutation but the paucity of reported cases likely suggested this association still as serendipity. In order to endorse this association, we link the development of intracranial aneurysms with STAT1 GOF mutation by presenting the two different cases of a patient and her mother, and demonstrate upregulated phosphorylated STAT4 and IL-12 receptor ß1 upon stimulation in patient's blood cells. We also detected increased transforming growth factor (TGF)-ß type 2 receptor expression, particularly in CD14+ cells, and a slightly higher phosphorylation rate of SMAD3. In addition, the mother of the patient developed disseminated bacille Calmette-Guérin disease after vaccination, speculating that GOF STAT1 mutations may confer a predisposition to weakly virulent mycobacteria.


Asunto(s)
Candidiasis Mucocutánea Crónica/genética , Aneurisma Intracraneal/genética , Factor de Transcripción STAT1/genética , Adyuvantes Inmunológicos/efectos adversos , Adulto , Angiografía de Substracción Digital , Vacuna BCG/efectos adversos , Candidiasis Mucocutánea Crónica/complicaciones , Candidiasis Mucocutánea Crónica/inmunología , Candidiasis Mucocutánea Crónica/metabolismo , Angiografía Cerebral , Femenino , Humanos , Aneurisma Intracraneal/complicaciones , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/metabolismo , Madres , Mutación , Fosfoproteínas/inmunología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Interleucina-12/inmunología , Receptores de Interleucina-12/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/inmunología , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Transcripción STAT4/inmunología , Factor de Transcripción STAT4/metabolismo , Proteína smad3/inmunología , Proteína smad3/metabolismo , Tuberculosis/inducido químicamente , Tuberculosis/inmunología , Adulto Joven
20.
Eur J Immunol ; 47(3): 552-562, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27995616

RESUMEN

Allergic asthma is a widespread chronic inflammatory disease of the airways. The role of different B cell subsets in developing asthma and respiratory tolerance is not well known. Especially regulatory B (Breg) cells are proposed to be important in asthma regulation. Using wild-type (WT) and B cell-deficient (µMT) mice we investigated how B cells are affected by induction of allergic airway inflammation and respiratory tolerance and whether they are necessary to develop these conditions. WT mice with an asthma-like phenotype, characterized by increased airway hyper reactivity, eosinophilic airway inflammation, mucus hypersecretion and elevated Th2 cytokines, exhibited increased MHCII and CD23 expression on follicular mature B cells in lung, bronchial lymph nodes (bLN) and spleen, which contributed to allergen-specific T cell proliferation in vitro. Germinal center B cell numbers were elevated and associated with increased production of allergen-specific immunoglobulins especially in bLN. In contrast, respiratory tolerance clearly attenuated these B cell alterations and directly enhanced marginal zone precursor B cells, which induced regulatory T cells in vitro. However, µMT mice developed asthma-like and tolerized phenotypes like WT mice. Our data indicate that although B cell subsets are affected by asthma-like and respiratory tolerant phenotypes, B cells are not required for tolerance induction.


Asunto(s)
Asma/inmunología , Subgrupos de Linfocitos B/fisiología , Linfocitos B Reguladores/fisiología , Neumonía/inmunología , Hipersensibilidad Respiratoria/inmunología , Linfocitos T Reguladores/inmunología , Células Th2/inmunología , Animales , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Tolerancia Inmunológica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de IgE/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA