Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Public Health ; 17(5): 897-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569269

RESUMEN

BACKGROUND: The efficacy of the viral clearance and clinical outcomes of favipiravir (FPV) in outpatients being treated for coronavirus disease 2019 (COVID-19) is unclear. Ivermectin (IVM), niclosamide (NCL), and FPV demonstrated synergistic effects in vitro for exceed 78% inhibiting severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) replication. METHODS: A phase 2, open-label, 1:1, randomized, controlled trial was conducted on Thai patients with mild-to-moderate COVID-19 who received either combination FPV/IVM/NCL therapy or FPV alone to assess the rate of viral clearance among individuals with mild-to-moderate COVID-19. RESULTS: Sixty non-high-risk comorbid patients with mild-to-moderate COVID-19 were randomized; 30 received FPV/IVM/NCL, and 30 received FPV alone. Mixed-effects multiple linear regression analysis of the cycle threshold value from SARS-CoV-2 PCR demonstrated no statistically significant differences in viral clearance rates between the combined FPV/IVM/NCL therapy group and the FPV-alone group. World Health Organization Clinical Progression scores and symptomatic improvement did not differ between arms on days 3, 6, and 10, and no adverse events were reported. No patients required hospitalization, intensive care unit admission, or supplemental oxygen or died within 28 days. C-reactive protein on day 3 was lower in the FPV/IVM/NCL group. CONCLUSION: Viral clearance rates did not differ significantly between the FPV/IVM/NCL combination therapy and FPV-alone groups of individuals with mild-to-moderate COVID-19, although the combined regimen demonstrated a synergistic effect in vitro. No discernible clinical benefit was observed. Further research is required to explore the potential benefits of FVP beyond its antiviral effects. TRIAL REGISTRATION: TCTR20230403007, Registered 3 April 2023 - Retrospectively registered,https://trialsearch.who.int/Trial2.aspx?TrialID=TCTR20230403007.


Asunto(s)
Amidas , COVID-19 , Pirazinas , Adulto , Humanos , SARS-CoV-2 , Ivermectina/uso terapéutico , Niclosamida , Aceleración , Resultado del Tratamiento , Antivirales/efectos adversos
2.
J Med Virol ; 96(3): e29552, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511598

RESUMEN

Ivermectin has broad-spectrum antiviral activities. Despite the failure in clinical application of COVID-19, it can serve as a lead compound for the development of more effective broad-spectrum antivirals, for which a better understanding of its antiviral mechanisms is essential. We thus searched for potential novel targets of ivermectin in host cells by label-free thermal proteomic profiling using Huh-7 cells. Inositol monophosphatase (IMPase) was found among the proteins with shifted thermal stability by ivermectin. Ivermectin could inhibit IMPase activity and reduce cellular myo-inositol and phosphatidylinositol-4-phosphate levels. On the other hand, inositol could impair the antiviral activity of ivermectin and lithium, an IMPase inhibitor with known antiviral activity. As phosphatidylinositol phosphate is crucial for the replication of many RNA viruses, inhibition of cellular myo-inositol biosynthesis may be an important antiviral mechanism of ivermectin. Hence, inhibition of IMPase could serve as a potential target for broad-spectrum antiviral development.


Asunto(s)
5'-Nucleotidasa , Ivermectina , Monoéster Fosfórico Hidrolasas , Humanos , Ivermectina/farmacología , Proteómica , Inositol/farmacología , Antivirales/farmacología
3.
BMC Res Notes ; 16(1): 359, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053139

RESUMEN

OBJECTIVE: Rare codons were previously shown to be enriched at the beginning of the dengue virus (DENV) open reading frame. However, the role of rare codons in regulating translation efficiency and replication of DENV remains unclear. The present study aims to clarify the significance of rare codon usage at the beginning of DENV transcripts using the codon adaptation index (CAI). METHODOLOGY: CAIs of the whole starting regions of DENV transcripts as well as 18-codon sliding windows of the regions were analyzed. RESULTS: One of the intriguing findings is that those rare codons do not typically result in uniformly low CAI in the starting region with rare codons. However, it shows a notable local drop in CAI around the 50th codon in all dengue serotypes. This suggests that there may be a translational checkpoint at this site and that the rare codon usage upstream to this checkpoint may not be related to translational control.


Asunto(s)
Uso de Codones , Virus del Dengue , Virus del Dengue/genética , Sistemas de Lectura Abierta/genética , Codón/genética
4.
Virus Res ; 334: 199162, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37356582

RESUMEN

Schlafen (SLFN) proteins are a subset of interferon-stimulated early response genes with antiviral properties. An antiviral mechanism of SLFN11 was previously demonstrated in human immunodeficiency virus type 1 (HIV-1)-infected cells, and it was shown that SLFN11 inhibited HIV-1 virus production in a codon usage-specific manner. The codon usage patterns of many viruses are vastly different from those of their hosts. The codon usage-specific inhibition of HIV-1 expression by SLFN11 suggests that SLFN11 may be able to inhibit other viruses with a suboptimal codon usage pattern. However, the effect of SLFN11 on the replication of influenza A virus (IAV) has never been reported. The induction of SLFN11 expression was observed upon IAV infection. The reduction of SLFN11 expression also promotes influenza virus replication. Moreover, we found that overexpression of SLFN11 could reduce the expression of a reporter gene with a viral codon usage pattern, and the inhibition of viral hemagglutinin (HA) gene was codon-specific as the expression of codon optimized HA was not affected. These results indicate that SLFN11 inhibits the influenza A virus in a codon-specific manner and that SLFN11 may contribute to innate defense against influenza A viruses.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/fisiología , Proteínas , Interferones/genética , Replicación Viral , Codón , Antivirales , Gripe Humana/genética , Proteínas Nucleares/genética
5.
BMC Pharmacol Toxicol ; 23(1): 41, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717393

RESUMEN

BACKGROUND: COVID-19 pandemic has claimed millions of lives and devastated the health service system, livelihood, and economy in many countries worldwide. Despite the vaccination programs in many countries, the spread of the pandemic continues, and effective treatment is still urgently needed. Although some antiviral drugs have been shown to be effective, they are not widely available. Repurposing of anti-parasitic drugs with in vitro anti-SARS-CoV-2 activity is a promising approach being tested in many clinical trials. Combination of these drugs is a plausible way to enhance their effectiveness. METHODS: The in vitro anti-SARS-CoV-2 activity of combinations of niclosamide, ivermectin and chloroquine were evaluated in Vero E6 and lung epithelial cells, Calu-3. RESULTS: All the two-drug combinations showed higher potency resulting in up to 4-fold reduction in the half maximal inhibitory concentration (IC50) values compared to individual drugs. Among these combinations, niclosamide-ivermectin achieved the highest inhibitory level of over 99%. Combination synergy analysis showed niclosamide-ivermectin combination to have the best synergy score with a mean Loewe synergy score of 4.28 and a peak synergy score of 24.6 in Vero E6 cells and a mean Loewe synergy score of 3.82 and a peak synergy score of 10.86 in Calu-3 cells. CONCLUSIONS: The present study demonstrated the benefit of drug combinations on anti-SARS-CoV-2 activity. Niclosamide and ivermectin showed the best synergistic profile and should be further tested in clinical trials.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Combinación de Medicamentos , Humanos , Ivermectina/farmacología , Niclosamida/farmacología , Pandemias
6.
Sci Rep ; 11(1): 393, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33432092

RESUMEN

Zika virus (ZIKV) is a mosquito-transmitted virus that has caused significant public health concerns around the world, partly because of an association with microcephaly in babies born to mothers who were infected with ZIKV during pregnancy. As a recently emerging virus, little is known as to how the virus interacts with the host cell machinery. A yeast-2-hybrid screen for proteins capable of interacting with the ZIKV E protein domain III, the domain responsible for receptor binding, identified 21 proteins, one of which was the predominantly ER resident chaperone protein GRP78. The interaction of GRP78 and ZIKV E was confirmed by co-immunoprecipitation and reciprocal co-immunoprecipitation, and indirect immunofluorescence staining showed intracellular and extracellular co-localization between GRP78 and ZIKV E. Antibodies directed against the N-terminus of GRP78 were able to inhibit ZIKV entry to host cells, resulting in significant reductions in the levels of ZIKV infection and viral production. Consistently, these reductions were also observed after down-regulation of GRP78 by siRNA. These results indicate that GRP78 can play a role mediating ZIKV binding, internalization and replication in cells. GRP78 is a main regulator of the unfolded protein response (UPR), and the study showed that expression of GRP78 was up-regulated, and the UPR was activated. Increases in CHOP expression, and activation of caspases 7 and 9 were also shown in response to ZIKV infection. Overall these results indicate that the interaction between GRP78 and ZIKV E protein plays an important role in ZIKV infection and replication, and may be a potential therapeutic target.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Proteínas Estructurales Virales/metabolismo , Virus Zika/metabolismo , Células A549 , Adulto , Anciano , Animales , Células Cultivadas , Chlorocebus aethiops , Culicidae , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/fisiología , Interacciones Huésped-Patógeno , Humanos , Masculino , Persona de Mediana Edad , Unión Proteica , Células Vero , Internalización del Virus , Virus Zika/fisiología , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología
7.
Heliyon ; 6(5): e03915, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32395662

RESUMEN

The codon usage pattern is a specific characteristic of each species; however, the codon usage of all of the genes in a genome is not uniform. Intriguingly, most viruses have codon usage patterns that are vastly different from the optimal codon usage of their hosts. How viral genes with different codon usage patterns are efficiently expressed during a viral infection is unclear. An analysis of the similarity between viral codon usage and the codon usage of the individual genes of a host genome has never been performed. In this study, we demonstrated that the codon usage of human RNA viruses is similar to that of some human genes, especially those involved in the cell cycle. This finding was substantiated by its concordance with previous reports of an upregulation at the protein level of some of these biological processes. It therefore suggests that some suboptimal viral codon usage patterns may actually be compatible with cellular translational machineries in infected conditions.

8.
Arch Virol ; 164(10): 2479-2491, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31321584

RESUMEN

Codon usage is biased in most species, and the pattern of codon usage bias is specific to each species or group of closely related species. Although viruses use the host translational machinery for synthesis of their proteins, their codon usage patterns do not match those of their host. Viral codon usage is determined by a complex interplay of mutational bias, genome composition constraints, translational adaptation to the host, and host cellular innate defense. The codon usage of parvoviruses was previously shown not to be strongly biased and selective pressure was found to be a dominating factor driving codon usage. The family Parvoviridae includes the genus Dependoparvovirus, some of the members of which require a helper virus to complete their replication cycle, whereas the rest of the family can replicate without the need for helper viruses. Here, we show that difference in the replication strategy of these viruses may be an important factor determining viral codon usage. Hierarchical clustering and principal component analysis revealed that the codon usage pattern of adeno-associated viruses (AAVs) of the genus Dependoparvovirus is distinct from that of members of the other genera of vertebrate parvoviruses, and even from that of independent viruses of the genus Dependoparvovirus. Furthermore, the codon usage of human AAVs was found to be similar to that of some human adenoviruses in hierarchical clustering and principal component analysis. This suggests that the codon usage of AAVs is different from that of other parvoviruses because of their distinctive replication strategy and that their codon usage is probably driven by forces similar to those that shaped the codon usage pattern of their helper viruses.


Asunto(s)
Codón , Parvovirus/crecimiento & desarrollo , Parvovirus/genética , Replicación Viral , Animales , Humanos
9.
Sci Rep ; 6: 35753, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27779201

RESUMEN

During infection, dengue virus (DENV) proteins interact with host cellular constituents promoting the remodeling of the cell to facilitate virus production. While a number of interacting proteins have been identified for DENV non-structural proteins, far fewer interacting partners have been identified for the DENV structural proteins. One protein that has been identified as a DENV E protein interacting protein is the cellular chaperone GRP78. GRP78 has been shown to have a number of cellular interacting partners including the voltage-dependent anion channel (VDAC). In this study we confirmed the interactions between GRP78 and DENV E protein and between GRP78 and VDAC. VDAC was shown to be re-localized during DENV infection, with no change in levels of protein expression. VDAC is predominantly located on the outer membrane of mitochondria and our result is consistent with movement of the mitochondria towards the ER during DENV infection. Down regulation of VDAC through siRNA significantly reduced DENV protein expression, as well as the percentage infection and output virus titer. Our results suggest that VDAC plays an important role in DENV infection.


Asunto(s)
Virus del Dengue/patogenicidad , Dengue/metabolismo , Proteínas de Choque Térmico/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Dengue/virología , Virus del Dengue/metabolismo , Chaperón BiP del Retículo Endoplásmico , Células HEK293 , Proteínas de Choque Térmico/genética , Interacciones Huésped-Patógeno , Humanos , ARN Interferente Pequeño , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...