Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 34: 145-162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31167959

RESUMEN

Tetraviruses are a group of relatively unknown small RNA viruses with particles that display a characteristic T=4 capsid architecture. Tetraviruses are classified into three families, the Alphatetraviridae, Permutotetraviridae and Carmotetraviridae, according to the divergent characteristics of their respective viral replicases. Tetraviruses generally infect the larvae of lepidopteran insect species, many of which are important agricultural pests and, until recently, were thought to have an unusually narrow host range and tissue tropism. The development of experimental systems for studying the viral infectious life cycle in tissue culture has permitted the extension of the virus host range to mammalian cells and plants. This chapter will review recent advances in the understanding of the biology of tetraviruses, highlighting new information on the expression and functional characterisation of viral proteins and the development of biological systems for elucidating the molecular mechanisms of infection, viral replication and host range.


Asunto(s)
Especificidad del Huésped , Estadios del Ciclo de Vida , Infecciones por Virus ARN/virología , Virus ARN/fisiología , Tropismo Viral , Cápside/metabolismo , Código de Barras del ADN Taxonómico , Regulación Viral de la Expresión Génica , Genoma Viral , Genómica/métodos , Virus ARN/clasificación , Ensamble de Virus , Acoplamiento Viral , Internalización del Virus , Replicación Viral
2.
PLoS One ; 14(6): e0217494, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31163039

RESUMEN

INTRODUCTION: Emerging viral diseases, most of which are zoonotic, pose a significant threat to global health. There is a critical need to identify potential new viral pathogens and the challenge is to identify the reservoirs from which these viruses might emerge. Deep sequencing of invertebrate transcriptomes has revealed a plethora of viruses, many of which represent novel lineages representing both plant and animal viruses and little is known about the potential threat that these viruses pose. METHODS: Providence virus, an insect virus, was used to establish a productive infection in Vigna unguiculata (cowpea) plants. Providence virus particles purified from these cowpea plants were used to infect two mammalian cell lines. FINDINGS: Here, we present evidence that Providence virus, a non-enveloped insect RNA virus, isolated from a lepidopteran midgut cell line can establish a productive infection in plants as well as in animal cells. The observation that Providence virus can readily infect both plants and mammalian cell culture lines demonstrates the ability of an insect RNA virus to establish productive infections across two kingdoms, in plants and invertebrate and vertebrate animal cell lines. CONCLUSIONS: The study highlights the potential of phytophagous insects as reservoirs for viral re-assortment and that plants should be considered as reservoirs for emerging viruses that may be potentially pathogenic to humans.


Asunto(s)
Lepidópteros/virología , Células Vegetales/virología , Infecciones por Virus ARN/metabolismo , Vigna/virología , Animales , Células HeLa , Humanos , Células MCF-7 , Virus ARN
3.
Mar Drugs ; 17(1)2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30654589

RESUMEN

The temperate marine sponge, Tsitsikamma favus, produces pyrroloiminoquinone alkaloids with potential as anticancer drug leads. We profiled the secondary metabolite reservoir of T. favus sponges using HR-ESI-LC-MS/MS-based molecular networking analysis followed by preparative purification efforts to map the diversity of new and known pyrroloiminoquinones and related compounds in extracts of seven specimens. Molecular taxonomic identification confirmed all sponges as T. favus and five specimens (chemotype I) were found to produce mainly discorhabdins and tsitsikammamines. Remarkably, however, two specimens (chemotype II) exhibited distinct morphological and chemical characteristics: the absence of discorhabdins, only trace levels of tsitsikammamines and, instead, an abundance of unbranched and halogenated makaluvamines. Targeted chromatographic isolation provided the new makaluvamine Q, the known makaluvamines A and I, tsitsikammamine B, 14-bromo-7,8-dehydro-3-dihydro-discorhabdin C, and the related pyrrolo-ortho-quinones makaluvamine O and makaluvone. Purified compounds displayed different activity profiles in assays for topoisomerase I inhibition, DNA intercalation and antimetabolic activity against human cell lines. This is the first report of makaluvamines from a Tsitsikamma sponge species, and the first description of distinct chemotypes within a species of the Latrunculiidae family. This study sheds new light on the putative pyrroloiminoquinone biosynthetic pathway of latrunculid sponges.


Asunto(s)
Poríferos/metabolismo , Pirroliminoquinonas/química , Animales , Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/aislamiento & purificación , Antimetabolitos Antineoplásicos/farmacología , Vías Biosintéticas , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión/métodos , ADN/química , ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/metabolismo , Pruebas de Enzimas , Células HEK293 , Células HeLa , Humanos , Sustancias Intercalantes/química , Sustancias Intercalantes/aislamiento & purificación , Sustancias Intercalantes/farmacología , Estructura Molecular , Pirroliminoquinonas/aislamiento & purificación , Pirroliminoquinonas/metabolismo , Pirroliminoquinonas/farmacología , Espectrometría de Masas en Tándem/métodos , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/aislamiento & purificación , Inhibidores de Topoisomerasa I/metabolismo , Inhibidores de Topoisomerasa I/farmacología
4.
Malar J ; 17(1): 191, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29724225

RESUMEN

BACKGROUND: Early detection is crucial for the effective treatment of malaria, particularly in those cases infected with Plasmodium falciparum. There is a need for diagnostic devices with the capacity to distinguish P. falciparum from other strains of malaria. Here, aptamers generated against targeted species-specific epitopes of P. falciparum lactate dehydrogenase (rPfLDH) are described. RESULTS: Two classes of aptamers bearing high binding affinity and specificity for recombinant P. falciparum lactate dehydrogenase (rPfLDH) and P. falciparum-specific lactate dehydrogenase epitopic oligopeptide (LDHp) were separately generated. Structurally-relevant moieties with particular consensus sequences (GGTAG and GGCG) were found in aptamers reported here and previously published, confirming their importance in recognition of the target, while novel moieties particular to this work (ATTAT and poly-A stretches) were identified. Aptamers with diagnostically-supportive functions were synthesized, prime examples of which are the aptamers designated as LDHp 1, LDHp 11 and rLDH 4 and rLDH 15 in work presented herein. Of the sampled aptamers raised against the recombinant protein, rLDH 4 showed the highest binding to the target rPfLDH in the ELONA assay, with both rLDH 4 and rLDH 15 indicating an ability to discriminate between rPfLDH and rPvLDH. LDHp 11 was generated against a peptide selected as a unique P. falciparum LDH peptide. The aptamer, LDHp 11, like antibodies against the same peptide, only detected rPfLDH and discriminated between rPfLDH and rPvLDH. This was supported by affinity binding experiments where only aptamers generated against a unique species-specific epitope showed an ability to preferentially bind to rPfLDH relative to rPvLDH rather than those generated against the whole recombinant protein. In addition, rLDH 4 and LDHp 11 demonstrated in situ binding to P. falciparum cells during confocal microscopy. CONCLUSIONS: The utilization and application of LDHp 11, an aptamer generated against a unique species-specific epitope of P. falciparum LDH indicated the ability to discriminate between recombinant P. falciparum and Plasmodium vivax LDH. This aptamer holds promise as a biorecognition element in malaria diagnostic devices for the detection, and differentiation, of P. falciparum and P. vivax malaria infections. This study paves the way to explore aptamer generation against targeted species-specific epitopes of other Plasmodium species.


Asunto(s)
Aptámeros de Péptidos/metabolismo , Epítopos/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/metabolismo
5.
Mar Drugs ; 15(4)2017 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-28346340

RESUMEN

Sponges are important sources of bioactive secondary metabolites. These compounds are frequently synthesized by bacterial symbionts, which may be recruited from the surrounding seawater or transferred to the sponge progeny by the parent. In this study, we investigated the bacterial communities associated with the sponge Tethya rubra Samaai and Gibbons 2005. Sponge specimens were collected from Evans Peak and RIY Banks reefs in Algoa Bay, South Africa and taxonomically identified by spicule analysis and molecular barcoding. Crude chemical extracts generated from individual sponges were profiled by ultraviolet high performance liquid chromatography (UV-HPLC) and subjected to bioactivity assays in mammalian cells. Next-generation sequencing analysis of 16S rRNA gene sequences was used to characterize sponge-associated bacterial communities. T. rubra sponges collected from the two locations were morphologically and genetically indistinguishable. Chemical extracts from sponges collected at RIY banks showed mild inhibition of the metabolic activity of mammalian cells and their UV-HPLC profiles were distinct from those of sponges collected at Evans Peak. Similarly, the bacterial communities associated with sponges from the two locations were distinct with evidence of vertical transmission of symbionts from the sponge parent to its embryos. We conclude that these distinct bacterial communities may be responsible for the differences observed in the chemical profiles of the two Algoa Bay T. rubra Samaai and Gibbons 2005 populations.


Asunto(s)
Bacterias/genética , Bahías/microbiología , Poríferos/microbiología , Animales , Biodiversidad , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN/métodos , Sudáfrica
6.
Virology ; 498: 277-287, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27614703

RESUMEN

Tetraviruses are small, non-enveloped, RNA viruses that exclusively infect lepidopteran insects. Their particles comprise 240 copies of a single capsid protein precursor (CP), which undergoes autoproteolytic cleavage during maturation. The molecular mechanisms of capsid assembly and maturation are well understood, but little is known about the viral infectious lifecycle due to a lack of tissue culture cell lines that are susceptible to tetravirus infection. We show here that binding and entry of the alphatetravirus, Helicoverpa armigera stunt virus (HaSV), is triggered by alkaline pH. At pH 9.0, wild-type HaSV virus particles undergo conformational changes that induce membrane-lytic activity and binding to Spodoptera frugiperda Sf9 cells. Binding is followed by entry and infection, with virus replication complexes detected by immunofluorescence microscopy within 2h post-infection and the CP after 12h. HaSV particles produced in S. frugiperda Sf9 cells are infectious. Helicoverpa armigera larval virus biofeed assays showed that pre-treatment with the V-ATPase inhibitor, Bafilomycin A1, resulted in a 50% decrease in larval mortality and stunting, while incubation of virus particles at pH 9.0 prior to infection restored infectivity. Together, these data show that HaSV, and likely other tetraviruses, requires the alkaline environment of the lepidopteran larval midgut for binding and entry into host cells.


Asunto(s)
Concentración de Iones de Hidrógeno , Virus de Insectos/fisiología , Virus ARN/fisiología , Acoplamiento Viral , Internalización del Virus , Animales , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Línea Celular , Virus de Insectos/ultraestructura , Modelos Moleculares , Conformación Proteica , Virus ARN/ultraestructura , Células Sf9 , Spodoptera/virología , Replicación Viral
7.
J Gen Virol ; 97(10): 2763-2768, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27521161

RESUMEN

Tetraviruses are small, positive (+ve)-sense ssRNA viruses that infect the midgut cells of lepidopteran larvae. Providence virus (PrV) is the only member of the family Carmotetraviridae (previously Tetraviridae). PrV particles exhibit the characteristic tetraviral T=4 icosahedral symmetry, but PrV is distinct from other tetraviruses with respect to genome organization and viral non-structural proteins. Currently, PrV is the only tetravirus known to infect and replicate in lepidopteran cell culture lines. In this report we demonstrate, using immunofluorescence microscopy, that PrV infects and replicates in a human tissue culture cell line (HeLa), producing infectious virus particles. We also provide evidence for PrV replication in vitro in insect, mammalian and plant cell-free systems. This study challenges the long-held view that tetraviruses have a narrow host range confined to one or a few lepidopteran species and highlights the need to consider the potential for apparently non-infectious viruses to be transferred to new hosts in the laboratory.


Asunto(s)
Virus de Insectos/fisiología , Virus ARN/fisiología , Animales , Línea Celular , Especificidad del Huésped , Humanos , Virus de Insectos/genética , Virus de Insectos/aislamiento & purificación , Insectos/virología , Mamíferos/virología , Virus ARN/genética , Virus ARN/aislamiento & purificación , Replicación Viral
8.
PLoS One ; 9(6): e99458, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24926959

RESUMEN

INTRODUCTION: Gene therapy continues to grow as an important area of research, primarily because of its potential in the treatment of disease. One significant area where there is a need for better understanding is in improving the efficiency of oligonucleotide delivery to the cell and indeed, following delivery, the characterization of the effects on the cell. METHODS: In this report, we compare different transfection reagents as delivery vehicles for gold nanoparticles functionalized with DNA oligonucleotides, and quantify their relative transfection efficiencies. The inhibitory properties of small interfering RNA (siRNA), single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA) sequences targeted to human metallothionein hMT-IIa are also quantified in HeLa cells. Techniques used in this study include fluorescence and confocal microscopy, qPCR and Western analysis. FINDINGS: We show that the use of transfection reagents does significantly increase nanoparticle transfection efficiencies. Furthermore, siRNA, ssRNA and ssDNA sequences all have comparable inhibitory properties to ssDNA sequences immobilized onto gold nanoparticles. We also show that functionalized gold nanoparticles can co-localize with autophagosomes and illustrate other factors that can affect data collection and interpretation when performing studies with functionalized nanoparticles. CONCLUSIONS: The desired outcome for biological knockdown studies is the efficient reduction of a specific target; which we demonstrate by using ssDNA inhibitory sequences targeted to human metallothionein IIa gene transcripts that result in the knockdown of both the mRNA transcript and the target protein.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Nanopartículas del Metal/química , Metalotioneína/genética , Oligonucleótidos Antisentido/farmacología , ADN de Cadena Simple/farmacología , Oro , Células HeLa , Humanos , Nanopartículas del Metal/ultraestructura , Metalotioneína/metabolismo , ARN Mensajero/análisis , ARN Interferente Pequeño/farmacología , Transfección
9.
Appl Microbiol Biotechnol ; 97(13): 5993-6007, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23563885

RESUMEN

Pseudomonads are metabolically versatile microbes that employ complex regulatory networks to control gene expression, particularly with respect to carbon and nitrogen metabolism. The aim of this study was to characterise the regulatory networks that control pyrimidine metabolism (hydantoin-hydrolysing activity) in Pseudomonas putida strain RU-KM3S, focussing on transcriptional activation of dihydropyrimidinase (Dhp) and ß-ureidopropionase (Bup), encoding dhp and bup, respectively. The two genes are arranged divergently on the chromosome and are separated by ORF1, encoding a putative transporter, which lies upstream of and in the same orientation as bup. The results from this study reveal that pyrimidine metabolism, as a function of Bup and Dhp activity in P. putida RU-KM3S, is controlled by a complex regulatory network including several global pathways in addition to induction by the substrate. Three major control pathways act at the level of transcriptional and include: (1) induction of transcriptional activation in the presence of hydantoin, (2) carbon catabolite repression mediated via a pathway independent of Crc and (3) quorum sensing that does not require a putative lux box located upstream of the dhp transcriptional start. Finally, the data suggest a minor role for the global regulators Anr, Vfr and Crc, likely through regulation of the activity of transcription factors interacting directly with the bup/ORF1-dhp promoter.


Asunto(s)
Represión Catabólica , Regulación Bacteriana de la Expresión Génica , Hidantoínas/metabolismo , Pseudomonas putida/fisiología , Percepción de Quorum , Transcripción Genética , Amidohidrolasas/biosíntesis , Regulación Enzimológica de la Expresión Génica , Hidrólisis , Pseudomonas putida/genética , Pseudomonas putida/crecimiento & desarrollo , Pseudomonas putida/metabolismo
10.
PLoS One ; 7(11): e50521, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209767

RESUMEN

INTRODUCTION: In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level. METHODS: Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays for parallel, higher throughput analysis. FINDINGS: We test the specificity of the detection platforms with ten inducers and independently validate the transcription factor activation. CONCLUSIONS: We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that is direct and not theoretically limited by the number of available reporters.


Asunto(s)
Plásmidos/genética , Biología de Sistemas/métodos , Western Blotting , Cloruro de Cadmio/farmacología , Línea Celular , Colforsina/farmacología , Dexametasona/farmacología , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Proc Natl Acad Sci U S A ; 109(38): 15162-7, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22949692

RESUMEN

Ultrasonics offers the possibility of developing sophisticated fluid manipulation tools in lab-on-a-chip technologies. Here we demonstrate the ability to shape ultrasonic fields by using phononic lattices, patterned on a disposable chip, to carry out the complex sequence of fluidic manipulations required to detect the rodent malaria parasite Plasmodium berghei in blood. To illustrate the different tools that are available to us, we used acoustic fields to produce the required rotational vortices that mechanically lyse both the red blood cells and the parasitic cells present in a drop of blood. This procedure was followed by the amplification of parasitic genomic sequences using different acoustic fields and frequencies to heat the sample and perform a real-time PCR amplification. The system does not require the use of lytic reagents nor enrichment steps, making it suitable for further integration into lab-on-a-chip point-of-care devices. This acoustic sample preparation and PCR enables us to detect ca. 30 parasites in a microliter-sized blood sample, which is the same order of magnitude in sensitivity as lab-based PCR tests. Unlike other lab-on-a-chip methods, where the sample moves through channels, here we use our ability to shape the acoustic fields in a frequency-dependent manner to provide different analytical functions. The methods also provide a clear route toward the integration of PCR to detect pathogens in a single handheld system.


Asunto(s)
Acústica , Técnicas y Procedimientos Diagnósticos , Malaria/diagnóstico , Técnicas Analíticas Microfluídicas/métodos , Microfluídica , Animales , Recuento de Células , Diseño de Equipo , Eritrocitos/parasitología , Hemoglobinas , Humanos , Malaria/sangre , Ratones , Plasmodium berghei/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Propiedades de Superficie
12.
BMC Mol Biol ; 11: 103, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-21194418

RESUMEN

BACKGROUND: The importance of appropriate normalization controls in quantitative real-time polymerase chain reaction (qPCR) experiments has become more apparent as the number of biological studies using this methodology has increased. In developing a system to study gene expression from transiently transfected plasmids, it became clear that normalization using chromosomally encoded genes is not ideal, at it does not take into account the transfection efficiency and the significantly lower expression levels of the plasmids. We have developed and validated a normalization method for qPCR using a co-transfected plasmid. RESULTS: The best chromosomal gene for normalization in the presence of the transcriptional activators used in this study, cadmium, dexamethasone, forskolin and phorbol-12-myristate 13-acetate was first identified. qPCR data was analyzed using geNorm, Normfinder and BestKeeper. Each software application was found to rank the normalization controls differently with no clear correlation. Including a co-transfected plasmid encoding the Renilla luciferase gene (Rluc) in this analysis showed that its calculated stability was not as good as the optimised chromosomal genes, most likely as a result of the lower expression levels and transfection variability. Finally, we validated these analyses by testing two chromosomal genes (B2M and ActB) and a co-transfected gene (Rluc) under biological conditions. When analyzing co-transfected plasmids, Rluc normalization gave the smallest errors compared to the chromosomal reference genes. CONCLUSIONS: Our data demonstrates that transfected Rluc is the most appropriate normalization reference gene for transient transfection qPCR analysis; it significantly reduces the standard deviation within biological experiments as it takes into account the transfection efficiencies and has easily controllable expression levels. This improves reproducibility, data validity and most importantly, enables accurate interpretation of qPCR data.


Asunto(s)
Expresión Génica , Luciferasas de Renilla/genética , Reacción en Cadena de la Polimerasa/normas , Animales , Cromosomas/genética , Células HEK293 , Humanos , Luciferasas de Renilla/metabolismo , Luciferasas de Renilla/normas , Estándares de Referencia , Programas Informáticos , Transfección
13.
Appl Microbiol Biotechnol ; 84(6): 1169-79, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19597814

RESUMEN

Optically pure D-: amino acids, like D-: hydroxyphenylglycine, are used in the semi-synthetic production of pharmaceuticals. They are synthesized industrially via the biocatalytic hydrolysis of p-hydroxyphenylhydantoin using enzymes derived from Agrobacterium tumefaciens strains. The reaction proceeds via a three-step pathway: (a) the ring-opening cleavage of the hydantoin ring by a D-: hydantoinase (encoded by hyuH), (b) conversion of the resultant D-: N-carbamylamino acid to the corresponding amino acid by a D-: N-carbamoylase (encoded by hyuC), and (c) chemical or enzymatic racemization of the un-reacted hydantoin substrate. While the structure and biochemical properties of these enzymes are well understood, little is known about their origin, their function, and their regulation in the native host. We investigated the mechanisms involved in the regulation of expression of the hydantoinase and N-carbamoylase enzyme activity in A. tumefaciens strain RU-AE01. We present evidence for a complex regulatory network that responds to the growth status of the cells, the presence of inducer, and nitrogen catabolite repression. Deletion analysis and site-directed mutagenesis were used to identify regulatory elements involved in transcriptional regulation of hyuH and hyuC expression. Finally, a comparison between the hyu gene clusters in several Agrobacterium strains provides insight into the function of D-: selective hydantoin-hydrolyzing enzyme systems in Agrobacterium species.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Amidohidrolasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Vías Biosintéticas , ADN Bacteriano/análisis , ADN Bacteriano/genética , Inducción Enzimática , Genes Bacterianos , Hidantoínas/metabolismo , Microbiología Industrial , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas
14.
Mol Genet Genomics ; 282(2): 185-96, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19444470

RESUMEN

Molecular chaperones facilitate the correct folding of other proteins, and heat shock proteins form one of the major classes of molecular chaperones. Heat shock protein 70 (Hsp70) has been extensively studied, and shown to be critically important for cellular protein homeostasis in almost all prokaryotic and eukaryotic systems studied to date. Since there have been very limited studies conducted on coelacanth chaperones, the main objective of this study was to genetically and biochemically characterize a coelacanth Hsp70. We have successfully isolated an Indonesian coelacanth (L. menadoensis) hsp70 gene, Lmhsp70, and found that it contained an intronless coding region and a potential upstream regulatory region. Lmhsp70 encoded a typical Hsp70 based on conserved structural and functional features, and the predicted upstream regulatory region was found to contain six potential promoter elements, and three potential heat shock elements (HSEs). The intronless nature of the coding region and the presence of HSEs suggested that Lmhsp70 was stress-inducible. Phylogenetic analyses provided further evidence that Lmhsp70 was probably inducible, and that it branched as a clade intermediate between bony fish and tetrapods. Recombinant LmHsp70 was successfully overproduced, purified and found to be functional using ATPase activity assays. Taken together, these data provide evidence for the first time that the coelacanth encodes a functional molecular chaperone system.


Asunto(s)
Cordados/genética , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/aislamiento & purificación , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromosomas Artificiales Bacterianos/genética , Mapeo Contig , Escherichia coli , Proteínas HSP70 de Choque Térmico/química , Datos de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas/genética , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...