Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39123492

RESUMEN

Benign lung diseases are common and often do not require specific treatment, but they pose challenges in the distinguishing of them from lung cancer during low-dose computed tomography (LDCT). This study presents a comprehensive methylation analysis using real-time PCR for minimally invasive diagnoses of lung cancer via employing BALF exosome DNA. A panel of seven epigenetic biomarkers was identified, exhibiting specific methylation patterns in lung cancer BALF exosome DNA. This panel achieved an area under the curve (AUC) of 0.97, with sensitivity and specificity rates of 88.24% and 97.14%, respectively. Each biomarker showed significantly higher mean methylation levels (MMLs) in both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) compared to non-cancer groups, with fold changes from 1.7 to 13.36. The MMLs of the biomarkers were found to be moderately elevated with increasing patient age and smoking history, regardless of sex. A strong correlation was found between the MMLs and NSCLC stage progression, with detection sensitivities of 79% for early stages and 92% for advanced stages. In the validation cohort, the model demonstrated an AUC of 0.95, with 94% sensitivity and specificity. Sensitivity for early-stage NSCLC detection improved from 88.00% to 92.00% when smoking history was included as an additional risk factor.

2.
Eur J Pharmacol ; 788: 321-327, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27375080

RESUMEN

Heme oxygenase-1 (HO-1) significantly contributes to survival of cancer cells and is being considered as one of therapeutic targets for cancer treatment. Propyl gallate (PG) is a synthetic phenolic compound that possess a potent anti-oxidant and anti-inflammatory activities. In the present study, we investigated whether PG exhibit an anti-cancer effect through modulating HO-1 activation. In human non-small cell lung cancer (NSCLC) cells, treatment with PG dose-dependently diminished HO-1 protein levels without changing its mRNA levels and consequently decreased HO-1 activity. PG also significantly enhanced the sensitivity of NSCLC cells to cisplatin-induced apoptosis, and this effect was attenuated by overexpression of HO-1. Mechanistically, PG exerted its chemosensitization effect by down-regulating HO-1 protein expression through a TRC8 (translocation in renal carcinoma, chromosome 8)-mediated ubiquitin-proteasome pathway. Collectively, our data provide the potential application of PG in combination chemotherapy to enhance drug sensitivity in lung cancer by targeting HO-1.


Asunto(s)
Apoptosis/efectos de los fármacos , Cisplatino/farmacología , Hemo-Oxigenasa 1/metabolismo , Neoplasias Pulmonares/patología , Galato de Propilo/farmacología , Proteolisis/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Citocromos c/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ubiquitina/metabolismo
3.
Oncotarget ; 6(39): 41650-66, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26497676

RESUMEN

Leukotriene B4 (LTB4) is a potent pro-inflammatory eicosanoid that is derived from arachidonic acid, and its signaling is known to have a tumor-promoting role in several cancer types. In this study, we investigated whether enhanced LTB4 signaling confers resistance to the cytostatic transforming growth factor-ß1 (TGF-ß1) response. We found that LTB4 pretreatment or ectopic expression of BLT1, a high affinity LTB4 receptor, fully abrogated TGF-ß1-induced cell cycle arrest and expression of p15INK4B and p27KIP1. Mechanism study revealed that LTB4-mediated suppression of TGF-ß1-induced Smad3 activation and growth inhibition was due to enhanced phosphorylation of Smad3 linker region (pSmad3L) through activation of BLT1-NAD(P)H oxidase (NOX)-reactive oxygen species (ROS)-epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3-K)-extracellular signal-activated kinase1/2 (ERK1/2)-linked signaling cascade. Furthermore, the LTB4/BLT1 signaling pathway leading to pSmad3L was constitutively activated in breast cancer cells and was correlated with TGF-ß1-resistant growth of the cells in vitro and in vivo. In human breast cancer tissues, the expression level of pSmad3L (Thr179) had a positive correlation with BLT1 expression. Collectively, our data demonstrate for the first time that the induction of pSmad3L through BLT1-NOX-ROS-EGFR-PI3K-ERK1/2 signaling pathway is a key mechanism by which LTB4 blocks the anti-proliferative responses of TGF-ß1, providing a novel mechanistic insight into the connection between enhanced inflammatory signal and cancer cell growth.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Leucotrieno B4/metabolismo , Receptores de Leucotrieno B4/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Células Hep G2 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Visón , NADPH Oxidasas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Receptores de Leucotrieno B4/genética , Transducción de Señal/efectos de los fármacos , Proteína smad3/genética , Factores de Tiempo , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Biochem Biophys Res Commun ; 435(4): 634-9, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23685151

RESUMEN

Hydrogen peroxide (H2O2) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H2O2 are less understood. Here we report an important mechanism for antagonistic effects of H2O2 on growth inhibitory response to transforming growth factor-ß1 (TGF-ß1). In Mv1Lu and HepG2 cells, pretreatment of H2O2 (0.05-0.2 mM) completely blocked TGF-ß1-mediated induction of p15(INK4B) expression and increase of its promoter activity. Interestingly, H2O2 selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-ß1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H2O2 increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H2O2 on TGF-ß1-induced increase of p15(INK4B)-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H2O2 as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H2O2 antagonizes the cytostatic function of TGF-ß1.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Peróxido de Hidrógeno/farmacología , Sistema de Señalización de MAP Quinasas/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Células Hep G2 , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Visón , Fosforilación/efectos de los fármacos
5.
Hum Mol Genet ; 22(6): 1249-61, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23223014

RESUMEN

Unlike genome-wide association studies, few comprehensive studies of copy number variation's contribution to complex human disease susceptibility have been performed. Copy number variations are abundant in humans and represent one of the least well-studied classes of genetic variants; in addition, known rheumatoid arthritis susceptibility loci explain only a portion of familial clustering. Therefore, we performed a genome-wide study of association between deletion or excess homozygosity and rheumatoid arthritis using high-density 550 K SNP genotype data from a genome-wide association study. We used a genome-wide statistical method that we recently developed to test each contiguous SNP locus between 868 cases and 1194 controls to detect excess homozygosity or deletion variants that influence susceptibility. Our method is designed to detect statistically significant evidence of deletions or homozygosity at individual SNPs for SNP-by-SNP analyses and to combine the information among neighboring SNPs for cluster analyses. In addition to successfully detecting the known deletion variants on major histocompatibility complex, we identified 4.3 and 28 kb clusters on chromosomes 10p and 13q, respectively, which were significant at a Bonferroni-type-corrected 0.05 nominal significant level. Independently, we performed analyses using PennCNV, an algorithm for identifying and cataloging copy numbers for individuals based on a hidden Markov model, and identified cases and controls that had chromosomal segments with copy number <2. Using Fisher's exact test for comparing the numbers of cases and controls with copy number <2 per SNP, we identified 26 significant SNPs (protective; more controls than cases) aggregating on chromosome 14 with P-values <10(-8).


Asunto(s)
Artritis Reumatoide/genética , Estudio de Asociación del Genoma Completo , Eliminación de Secuencia , Estudios de Casos y Controles , Variaciones en el Número de Copia de ADN , Femenino , Homocigoto , Humanos , Masculino , Polimorfismo de Nucleótido Simple
6.
Hum Genet ; 129(6): 663-73, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21305319

RESUMEN

Li-Fraumeni syndrome (LFS) is a rare familial cancer syndrome characterized by early cancer onset, diverse tumor types, and multiple primary tumors. Germ-line TP53 mutations have been identified in most LFS families. A high-frequency single-nucleotide polymorphism, SNP309 (rs2279744), in MDM2 was recently confirmed to be a modifier of cancer risk in several case-series studies: substantially earlier cancer onset was observed in SNP309 G-allele carriers than in wild-type individuals by 7-16 years. However, cancer risk analyses that jointly account for measured hereditary TP53 mutations and MDM2 SNP309 have not been systematically investigated in familial cases. Here, we determined the combined effects of measured TP53 mutations, MDM2 SNP309, and gender and their interactions simultaneously in LFS families. We used the method that is designed for extended pedigrees and structured for age-specific risk models based on Cox proportional hazards regression. We analyzed the cancer incidence in 19 extended pedigrees with germ-line TP53 mutations ascertained through the clinical LFS phenotype. The dataset consisted of 463 individuals with 129 TP53 mutation carriers. Our analyses showed that the TP53 germ-line mutation and its interaction with gender were strongly associated with familial cancer incidence and that the association between MDM2 SNP309 and increased cancer risk was modest. In contrast with several case-series studies, the interaction between MDM2 SNP309 and TP53 mutation was not statistically significant in our LFS family cohort. Our results showed that SNP309 G-alleles were associated with accelerated tumor formation in both carriers and non-carriers of germ-line TP53 mutations.


Asunto(s)
Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Síndrome de Li-Fraumeni/genética , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA