Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38352561

RESUMEN

KvS proteins are voltage-gated potassium channel subunits that form functional channels when assembled into heterotetramers with Kv2.1 ( KCNB1 ) or Kv2.2 ( KCNB2 ). Mammals have 10 KvS subunits: Kv5.1 ( KCNF1 ), Kv6.1 ( KCNG1 ), Kv6.2 ( KCNG2 ), Kv6.3 ( KCNG3 ), Kv6.4 ( KCNG4 ), Kv8.1 ( KCNV1 ), Kv8.2 ( KCNV2 ), Kv9.1 ( KCNS1 ), Kv9.2 ( KCNS2 ), and Kv9.3 ( KCNS3 ). Electrically excitable cells broadly express channels containing Kv2 subunits and most neurons have substantial Kv2 conductance. However, whether KvS subunits contribute to these conductances has not been clear, leaving the physiological roles of KvS subunits poorly understood. Here, we identify that two potent Kv2 inhibitors, used in combination, can distinguish conductances of Kv2/KvS channels and Kv2-only channels. We find that Kv5, Kv6, Kv8, or Kv9-containing channels are resistant to the Kv2-selective pore-blocker RY785 yet remain sensitive to the Kv2-selective voltage sensor modulator guangxitoxin-1E (GxTX). Using these inhibitors in mouse superior cervical ganglion neurons, we find that little of the Kv2 conductance is carried by KvS-containing channels. In contrast, conductances consistent with KvS-containing channels predominate over Kv2-only channels in mouse and human dorsal root ganglion neurons. These results establish an approach to pharmacologically distinguish conductances of Kv2/KvS heteromers from Kv2-only channels, enabling investigation of the physiological roles of endogenous KvS subunits. These findings suggest that drugs targeting KvS subunits could modulate electrical activity of subsets of Kv2-expressing cell types.

3.
Int Arch Allergy Immunol ; 184(9): 893-902, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37552963

RESUMEN

INTRODUCTION: Eotaxin-2 and -3 of the C-C chemokine subfamily function as potent chemoattractant factors for eosinophil recruitment and various immune responses in allergic and inflammatory airway diseases. Mucin 5AC (MUC5AC), a major gel-forming secretory mucin, is overexpressed in airway inflammation. However, the association between mucin secretion and eotaxin-2/3 expression in the upper and lower airway epithelial cells has not been fully elucidated. Therefore, in this study, we investigated the effects of eotaxin-2/3 on MUC5AC expression and its potential signaling mediators. METHODS: We analyzed the effects of eotaxin-2 and -3 on NCI-H292 human airway epithelial cells and primary human nasal epithelial cells (HNEpCs) via reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting. Along with immunoblot analyses with specific inhibitors and small interfering RNA (siRNA), we explored the signaling pathway involved in MUC5AC expression following eotaxin-2/3 treatment. RESULTS: In HCI-H292 cells, eotaxin-2/3 activated the mRNA expression and protein production of MUC5AC. A specific inhibitor of C-C motif chemokine receptor 3 (CCR3), SB328437, suppressed eotaxin-2/3-induced MUC5AC expression at both the mRNA and protein levels. Eotaxin-2/3 induced the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and p38, whereas pretreatment with a CCR3 inhibitor significantly attenuated this effect. Induction of MUC5AC expression with eotaxin-2/3 was decreased by U0126 and SB203580, specific inhibitors of ERK1/2 and p38 mitogen-activated protein kinase (MAPK), respectively. In addition, cell transfection with ERK1/2 and p38 siRNAs inhibited eotaxin-2/3-induced MUC5AC expression. Moreover, specific inhibitors (SB328437, U0126, and SB203580) attenuated eotaxin-2/3-induced MUC5AC expression in HNEpCs. CONCLUSION: Our results imply that CCR3-mediated ERK1/2 and p38 MAPK are involved in the signal transduction of eotaxin-2/3-induced MUC5AC overexpression.


Asunto(s)
Mucina 5AC , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Línea Celular , Mucina 5AC/genética , Mucina 5AC/metabolismo , Quimiocina CCL24/metabolismo , Quimiocina CCL24/farmacología , Quimiocina CCL26/metabolismo , Transducción de Señal , Células Epiteliales/metabolismo , Receptores de Quimiocina/metabolismo , ARN Mensajero/metabolismo
4.
Nat Commun ; 14(1): 3613, 2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330538

RESUMEN

Cannabidiol (CBD), a major non-psychoactive phytocannabinoid in cannabis, is an effective treatment for some forms of epilepsy and pain. At high concentrations, CBD interacts with a huge variety of proteins, but which targets are most relevant for clinical actions is still unclear. Here we show that CBD interacts with Nav1.7 channels at sub-micromolar concentrations in a state-dependent manner. Electrophysiological experiments show that CBD binds to the inactivated state of Nav1.7 channels with a dissociation constant of about 50 nM. The cryo-EM structure of CBD bound to Nav1.7 channels reveals two distinct binding sites. One is in the IV-I fenestration near the upper pore. The other binding site is directly next to the inactivated "wedged" position of the Ile/Phe/Met (IFM) motif on the short linker between repeats III and IV, which mediates fast inactivation. Consistent with producing a direct stabilization of the inactivated state, mutating residues in this binding site greatly reduced state-dependent binding of CBD. The identification of this binding site may enable design of compounds with improved properties compared to CBD itself.


Asunto(s)
Cannabidiol , Epilepsia , Humanos , Cannabidiol/farmacología , Sitios de Unión
5.
Cell Rep ; 42(6): 112563, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37267104

RESUMEN

It is challenging to apply traditional mutational scanning to voltage-gated sodium channels (NaVs) and functionally annotate the large number of coding variants in these genes. Using a cytosine base editor and a pooled viability assay, we screen a library of 368 guide RNAs (gRNAs) tiling NaV1.2 to identify more than 100 gRNAs that change NaV1.2 function. We sequence base edits made by a subset of these gRNAs to confirm specific variants that drive changes in channel function. Electrophysiological characterization of these channel variants validates the screen results and provides functional mechanisms of channel perturbation. Most of the changes caused by these gRNAs are classifiable as loss of function along with two missense mutations that lead to gain of function in NaV1.2 channels. This two-tiered strategy to functionally characterize ion channel protein variants at scale identifies a large set of loss-of-function mutations in NaV1.2.


Asunto(s)
Edición Génica , Canal de Sodio Activado por Voltaje NAV1.2 , Canales de Sodio Activados por Voltaje , Edición Génica/métodos , Mutagénesis/genética , Mutación , Mutación Missense/genética
6.
Stem Cell Reports ; 18(4): 1030-1047, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37044067

RESUMEN

Development of new non-addictive analgesics requires advanced strategies to differentiate human pluripotent stem cells (hPSCs) into relevant cell types. Following principles of developmental biology and translational applicability, here we developed an efficient stepwise differentiation method for peptidergic and non-peptidergic nociceptors. By modulating specific cell signaling pathways, hPSCs were first converted into SOX10+ neural crest, followed by differentiation into sensory neurons. Detailed characterization, including ultrastructural analysis, confirmed that the hPSC-derived nociceptors displayed cellular and molecular features comparable to native dorsal root ganglion (DRG) neurons, and expressed high-threshold primary sensory neuron markers, transcription factors, neuropeptides, and over 150 ion channels and receptors relevant for pain research and axonal growth/regeneration studies (e.g., TRPV1, NAV1.7, NAV1.8, TAC1, CALCA, GAP43, DPYSL2, NMNAT2). Moreover, after confirming robust functional activities and differential response to noxious stimuli and specific drugs, a robotic cell culture system was employed to produce large quantities of human sensory neurons, which can be used to develop nociceptor-selective analgesics.


Asunto(s)
Neuronas , Células Madre Pluripotentes , Humanos , Neuronas/metabolismo , Nociceptores , Diferenciación Celular , Transducción de Señal , Ganglios Espinales/metabolismo , Células Receptoras Sensoriales
7.
Mol Pharmacol ; 103(4): 221-229, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36635052

RESUMEN

Sodium channel inhibitors used as local anesthetics, antiarrhythmics, or antiepileptics typically have the property of use-dependent inhibition, whereby inhibition is enhanced by repetitive channel activation. For targeting pain, Nav1.8 channels are an attractive target because they are prominent in primary pain-sensing neurons, with little or no expression in most other kinds of neurons, and a number of Nav1.8-targeted compounds have been developed. We examined the characteristics of Nav1.8 inhibition by one of the most potent Nav1.8 inhibitors so far described, A-887826, and found that when studied with physiologic resting potentials and physiologic temperatures, inhibition had strong "reverse use dependence", whereby inhibition was relieved by repetitive short depolarizations. This effect was much stronger with A-887826 than with A-803467, another Nav1.8 inhibitor. The use-dependent relief from inhibition was seen in both human Nav1.8 channels studied in a cell line and in native Nav1.8 channels in mouse dorsal root ganglion (DRG) neurons. In native Nav1.8 channels, substantial relief of inhibition occurred during repetitive stimulation by action potential waveforms at 5 Hz, suggesting that the phenomenon is likely important under physiologic conditions. SIGNIFICANCE STATEMENT: Nav1.8 sodium channels are expressed in primary pain-sensing neurons and are a prime current target for new drugs for pain. This work shows that one of the most potent Nav1.8 inhibitors, A-887826, has the unusual property that inhibition is relieved by repeated short depolarizations. This "reverse use dependence" may reduce inhibition during physiological firing and should be selected against in drug development.


Asunto(s)
Morfolinas , Canal de Sodio Activado por Voltaje NAV1.8 , Neuronas , Niacinamida , Dolor , Animales , Humanos , Ratones , Ganglios Espinales , Potenciales de la Membrana , Morfolinas/farmacología , Morfolinas/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.8/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Niacinamida/farmacología , Niacinamida/uso terapéutico , Dolor/tratamiento farmacológico , Dolor/metabolismo , Ratas Sprague-Dawley , Ratas
8.
J Ginseng Res ; 46(6): 801-808, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36312733

RESUMEN

Background: Diesel exhaust particle (DEP) is a harmful kind of particulate matter known to exacerbate pre-existing respiratory diseases. Although their adverse effects on airway pathologies have been widely studied, the mechanistic analysis of signaling pathways and potential targets in reducing DEP-induced mucin secretion and pro-inflammatory cytokine production remain elusive. We, for the first time, investigated the effects of Korean Red Ginseng (KRG) extracts on mucin overproduction and airway inflammation induced by DEP. Methods: The effects of KRG and saponin on DEP-induced expression of MUC5AC and interleukin (IL)-6/8 were examined by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) in human airway epithelial NCI-H292 cells. We conducted Western blotting analysis to analyze the associated signaling pathways. To evaluate the effects of saponin treatment on DEP-induced MUC5AC expression and inflammatory cell infiltrations in ovalbumin (OVA)-sensitized mice, immunohistochemical (IHC) staining and real-time PCR were implemented. Results: The KRG extracts markedly attenuated DEP-induced MUC5AC expression in vitro by inhibiting the TLR4/TRIF/NF-κB pathway. Furthermore, KRG and saponin inhibited DEP-induced pro-inflammatory cytokine IL-6/8 production. The in vivo study revealed that saponin blocked DEP-induced inflammation, mucin production and MUC5AC expression. Conclusion: Our study revealed that KRG extracts have inhibitory effects on DEP-induced expression of MUC5AC and the production of pro-inflammatory cytokines. This finding provides novel insights into the mechanism by which saponin alleviates diesel-susceptible airway inflammation, elucidating its potential as a phytotherapeutic agent for inflammatory pathologies of airway.

9.
Elife ; 112022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179483

RESUMEN

Cannabidiol (CBD), a chemical found in the Cannabis sativa plant, is a clinically effective antiepileptic drug whose mechanism of action is unknown. Using a fluorescence-based thallium flux assay, we performed a large-scale screen and found enhancement of flux through heterologously expressed human Kv7.2/7.3 channels by CBD. Patch-clamp recordings showed that CBD acts at submicromolar concentrations to shift the voltage dependence of Kv7.2/7.3 channels in the hyperpolarizing direction, producing a dramatic enhancement of current at voltages near -50 mV. CBD enhanced native M-current in mouse superior cervical ganglion starting at concentrations of 30 nM and also enhanced M-current in rat hippocampal neurons. The potent enhancement of Kv2/7.3 channels by CBD may contribute to its effectiveness as an antiepileptic drug by reducing neuronal hyperexcitability.


Asunto(s)
Cannabidiol/farmacología , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Neuronas/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Fenómenos Electrofisiológicos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Neuronas/efectos de los fármacos , Ratas
10.
Sci Transl Med ; 13(619): eabj9837, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34757806

RESUMEN

Despite substantial efforts dedicated to the development of new, nonaddictive analgesics, success in treating pain has been limited. Clinically available analgesic agents generally lack efficacy and may have undesirable side effects. Traditional target-based drug discovery efforts that generate compounds with selectivity for single targets have a high rate of attrition because of their poor clinical efficacy. Here, we examine the challenges associated with the current analgesic drug discovery model and review evidence in favor of stem cell­derived neuronal-based screening approaches for the identification of analgesic targets and compounds for treating diverse forms of acute and chronic pain.


Asunto(s)
Dolor Crónico , Analgésicos/uso terapéutico , Dolor Crónico/tratamiento farmacológico , Humanos , Nociceptores
11.
Br J Pharmacol ; 178(19): 3905-3923, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33988876

RESUMEN

BACKGROUND AND PURPOSE: Many pain-triggering nociceptor neurons express TRPV1 or TRPA1, cation-selective channels with large pores that enable permeation of QX-314, a cationic analogue of lidocaine. Co-application of QX-314 with TRPV1 or TRPA1 activators can silence nociceptors. In this study, we describe BW-031, a novel more potent cationic sodium channel inhibitor, and test whether its application alone can inhibit pain associated with tissue inflammation and whether this strategy can also inhibit cough. EXPERIMENTAL APPROACH: We tested the ability of BW-031 to inhibit pain in three models of tissue inflammation:- inflammation in rat paws produced by complete Freund's adjuvant or by surgical incision and a mouse ultraviolet (UV) burn model. We tested the ability of BW-031 to inhibit cough induced by inhalation of dilute citric acid in guinea pigs. KEY RESULTS: BW-031 inhibited Nav 1.7 and Nav 1.1 channels with approximately sixfold greater potency than QX-314 when introduced inside cells. BW-031 inhibited inflammatory pain in all three models tested, producing more effective and longer-lasting inhibition of pain than QX-314 in the mouse UV burn model. BW-031 was effective in reducing cough counts by 78%-90% when applied intratracheally under isoflurane anaesthesia or by aerosol inhalation in guinea pigs with airway inflammation produced by ovalbumin sensitization. CONCLUSION AND IMPLICATIONS: BW-031 is a novel cationic sodium channel inhibitor that can be applied locally as a single agent to inhibit inflammatory pain. BW-031 can also effectively inhibit cough in a guinea pig model of citric acid-induced cough, suggesting a new clinical approach to treating cough.


Asunto(s)
Tos , Bloqueadores de los Canales de Sodio , Animales , Tos/inducido químicamente , Tos/tratamiento farmacológico , Cobayas , Ratones , Nociceptores , Dolor/tratamiento farmacológico , Ratas , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Canales Catiónicos TRPV
12.
Mol Pharmacol ; 97(6): 377-383, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32193331

RESUMEN

PF-05089771 is an aryl sulfonamide Nav1.7 channel blocker that binds to the inactivated state of Nav1.7 channels with high affinity but binds only weakly to channels in the resting state. Such aryl sulfonamide Nav1.7 channel blockers bind to the extracellular surface of the S1-S4 voltage-sensor segment of homologous Domain 4, whose movement is associated with inactivation. This binding site is different from that of classic sodium channel inhibitors like lidocaine, which also bind with higher affinity to the inactivated state than the resting state but bind at a site within the pore of the channel. The common dependence on gating state with distinct binding sites raises the possibility that inhibition by aryl sulfonamides and by classic local anesthetics might show an interaction mediated by their mutual state dependence. We tested this possibility by examining the state-dependent inhibition by PF-05089771 and lidocaine of human Nav1.7 channels expressed in human embryonic kidney 293 cells. At -80 mV, where a small fraction of channels are in an inactivated state under drug-free conditions, inhibition by PF-05089771 was both enhanced and speeded in the presence of lidocaine. The results suggest that lidocaine binding to the channel enhances PF-05089771 inhibition by altering the equilibrium between resting states (with D4S4 in the inner position) and inactivated states (with D4S4 in the outer position). The gating state-mediated interaction between the compounds illustrates a principle applicable to many state-dependent agents. SIGNIFICANCE STATEMENT: The results show that lidocaine enhances the degree and rate of inhibition of Nav1.7 channels by the aryl sulfonamide compound PF-05089771, consistent with state-dependent binding by lidocaine increasing the fraction of channels presenting a high-affinity binding site for PF-05089771 and suggesting that combinations of agents targeted to the pore-region binding site of lidocaine and the external binding site of aryl sulfonamides may have synergistic actions.


Asunto(s)
Lidocaína/farmacología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Éteres Fenílicos/farmacología , Sulfonamidas/farmacología , Agonistas del Canal de Sodio Activado por Voltaje/farmacología , Sinergismo Farmacológico , Células HEK293 , Humanos
13.
Elife ; 82019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31765298

RESUMEN

Voltage-dependent sodium and calcium channels in pain-initiating nociceptor neurons are attractive targets for new analgesics. We made a permanently charged cationic derivative of an N-type calcium channel-inhibitor. Unlike cationic derivatives of local anesthetic sodium channel blockers like QX-314, this cationic compound inhibited N-type calcium channels more effectively with extracellular than intracellular application. Surprisingly, the compound is also a highly effective sodium channel inhibitor when applied extracellularly, producing more potent inhibition than lidocaine or bupivacaine. The charged inhibitor produced potent and long-lasting analgesia in mouse models of incisional wound and inflammatory pain, inhibited release of the neuropeptide calcitonin gene-related peptide (CGRP) from dorsal root ganglion neurons, and reduced inflammation in a mouse model of allergic asthma, which has a strong neurogenic component. The results show that some cationic molecules applied extracellularly can powerfully inhibit both sodium channels and calcium channels, thereby blocking both nociceptor excitability and pro-inflammatory peptide release.


Asunto(s)
Canales de Calcio Tipo N/genética , Inflamación Neurogénica/tratamiento farmacológico , Dolor/tratamiento farmacológico , Canales de Sodio/genética , Animales , Bupivacaína/farmacología , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Modelos Animales de Enfermedad , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Humanos , Lidocaína/análogos & derivados , Lidocaína/farmacología , Ratones , Inflamación Neurogénica/genética , Inflamación Neurogénica/patología , Nociceptores , Dolor/genética , Dolor/patología , Bloqueadores de los Canales de Sodio/farmacología
14.
PLoS One ; 13(10): e0204586, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30286208

RESUMEN

PURPOSE: We aimed to develop a model of chronic kidney disease (CKD) progression for predicting the probability and time to progression from various CKD stages to renal replacement therapy (RRT), using 6 months of clinical data variables routinely measured at healthcare centers. METHODS: Data were derived from the electronic medical records of Ajou University Hospital, Suwon, South Korea from October 1997 to September 2012. We included patients who were diagnosed with CKD (estimated glomerular filtration rate [eGFR] < 60 mL·min-1·1.73 m-2 for ≥ 3 months) and followed up for at least 6 months. The study population was randomly divided into training and test sets. RESULTS: We identified 4,509 patients who met reasonable diagnostic criteria. Patients were randomly divided into 2 groups, and after excluding patients with missing data, the training and test sets included 1,625 and 1,618 patients, respectively. The integral mean was the most powerful explanatory (R2 = 0.404) variable among the 8 modified values. Ten variables (age, sex, diabetes mellitus[DM], polycystic kidney disease[PKD], serum albumin, serum hemoglobin, serum phosphorus, serum potassium, eGFR (calculated by Chronic Kidney Disease Epidemiology Collaboration [CKD-EPI]), and urinary protein) were included in the final risk prediction model for CKD stage 3 (R2 = 0.330). Ten variables (age, sex, DM, GN, PKD, serum hemoglobin, serum blood urea nitrogen[BUN], serum calcium, eGFR(calculated by Modification of Diet in Renal Disease[MDRD]), and urinary protein) were included in the final risk prediction model for CKD stage 4 (R2 = 0.386). Four variables (serum hemoglobin, serum BUN, eGFR(calculated by MDRD) and urinary protein) were included in the final risk prediction model for CKD stage 5 (R2 = 0.321). CONCLUSION: We created a prediction model according to CKD stages by using integral means. Based on the results of the Brier score (BS) and Harrel's C statistics, we consider that our model has significant explanatory power to predict the probability and interval time to the initiation of RRT.


Asunto(s)
Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/terapia , Terapia de Reemplazo Renal , Adulto , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Registros Electrónicos de Salud , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Pronóstico , Distribución Aleatoria , Insuficiencia Renal Crónica/fisiopatología , Estudios Retrospectivos , Medición de Riesgo/métodos , Factores de Tiempo , Adulto Joven
15.
Mol Pharmacol ; 91(4): 277-286, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28119481

RESUMEN

Lacosamide is an antiseizure agent that targets voltage-dependent sodium channels. Previous experiments have suggested that lacosamide is unusual in binding selectively to the slow-inactivated state of sodium channels, in contrast to drugs like carbamazepine and phenytoin, which bind tightly to fast-inactivated states. Using heterologously expressed human Nav1.7 sodium channels, we examined the state-dependent effects of lacosamide. Lacosamide induced a reversible shift in the voltage dependence of fast inactivation studied with 100-millisecond prepulses, suggesting binding to fast-inactivated states. Using steady holding potentials, lacosamide block was very weak at -120 mV (3% inhibition by 100 µM lacosamide) but greatly enhanced at -80 mV (43% inhibition by 100 µM lacosamide), where there is partial fast inactivation but little or no slow inactivation. During long depolarizations, lacosamide slowly (over seconds) put channels into states that recovered availability slowly (hundreds of milliseconds) at -120 mV. This resembles enhancement of slow inactivation, but the effect was much more pronounced at -40 mV, where fast inactivation is complete, but slow inactivation is not, than at 0 mV, where slow inactivation is maximal, more consistent with slow binding to fast-inactivated states than selective binding to slow-inactivated states. Furthermore, inhibition by lacosamide was greatly reduced by pretreatment with 300 µM lidocaine or 300 µM carbamazepine, suggesting that lacosamide, lidocaine, and carbamazepine all bind to the same site. The results suggest that lacosamide binds to fast-inactivated states in a manner similar to other antiseizure agents but with slower kinetics of binding and unbinding.


Asunto(s)
Acetamidas/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Carbamazepina/farmacología , Células HEK293 , Humanos , Lacosamida , Potenciales de la Membrana/efectos de los fármacos , Factores de Tiempo
16.
Mol Pharmacol ; 85(2): 381-7, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24319110

RESUMEN

Voltage-gated sodium channels are inhibited by many local anesthetics, antiarrhythmics, and antiepileptic drugs. The local anesthetic lidocaine appears to be able to access its binding site in the sodium channel only from the membrane phase or from the internal face of the channel. In contrast, the antiepileptic drug carbamazepine was found to inhibit voltage-gated sodium channels only with external, but not internal, application, implying a major difference. We investigated this point using both whole-cell and inside-out patch recordings from human Na(v)1.7 channels in a stable cell line. In the whole-cell configuration, carbamazepine inhibited sodium current within seconds when applied externally, but had little or no effect when applied internally for up to 15 minutes, confirming previous results. However, carbamazepine inhibited sodium channels effectively and rapidly when applied to the internal face of the membrane using inside-out patch recording. We found that lidocaine also has little or no effect when applied intracellularly in whole-cell recording, but blocks effectively and rapidly when applied to the internal surface using inside-out patches. In contrast, the cationic lidocaine derivative QX-314 (N-ethyl-lidocaine) blocks effectively when applied internally with whole-cell dialysis, as well as when applied to inside-out patches. We conclude that carbamazepine and lidocaine access the sodium channel in similar ways and hypothesize that their lack of effect with internal dialysis in whole-cell recording reflects rapid exit through membrane near the pipette recording site. This effect likely limits the ability of any compound with significant membrane permeability to be applied intracellularly by whole-cell dialysis.


Asunto(s)
Carbamazepina/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Permeabilidad de la Membrana Celular , Células Cultivadas , Humanos , Lidocaína/análogos & derivados , Lidocaína/farmacología , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos
17.
J Neurophysiol ; 107(11): 3155-67, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22442564

RESUMEN

Blood-depressing substance I (BDS-I), a 43 amino-acid peptide from sea anemone venom, is used as a specific inhibitor of Kv3-family potassium channels. We found that BDS-I acts with even higher potency to modulate specific types of voltage-dependent sodium channels. In rat dorsal root ganglion (DRG) neurons, 3 µM BDS-I strongly enhanced tetrodotoxin (TTX)-sensitive sodium current but weakly inhibited TTX-resistant sodium current. In rat superior cervical ganglion (SCG) neurons, which express only TTX-sensitive sodium current, BDS-I enhanced current elicited by small depolarizations and slowed decay of currents at all voltages (EC(50) ∼ 300 nM). BDS-I acted with exceptionally high potency and efficacy on cloned human Nav1.7 channels, slowing inactivation by 6-fold, with an EC(50) of approximately 3 nM. BDS-I also slowed inactivation of sodium currents in N1E-115 neuroblastoma cells (mainly from Nav1.3 channels), with an EC(50) ∼ 600 nM. In hippocampal CA3 pyramidal neurons (mouse) and cerebellar Purkinje neurons (mouse and rat), BDS-I had only small effects on current decay (slowing inactivation by 20-50%), suggesting relatively weak sensitivity of Nav1.1 and Nav1.6 channels. The biggest effect of BDS-I in central neurons was to enhance resurgent current in Purkinje neurons, an effect reflected in enhancement of sodium current during the repolarization phase of Purkinje neuron action potentials. Overall, these results show that BDS-I acts to modulate sodium channel gating in a manner similar to previously known neurotoxin receptor site 3 anemone toxins but with different isoform sensitivity. Most notably, BDS-I acts with very high potency on human Nav1.7 channels.


Asunto(s)
Venenos de Cnidarios/fisiología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuronas/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Línea Celular Tumoral , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Ratones , Datos de Secuencia Molecular , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Anémonas de Mar
18.
Mol Pharmacol ; 80(2): 247-57, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21536754

RESUMEN

Brilliant blue G (BBG), best known as an antagonist of P2X7 receptors, was found to inhibit voltage-gated sodium currents in N1E-115 neuroblastoma cells. Sodium currents elicited from a holding potential of -60 mV were blocked with an IC(50) of 2 µM. Block was enhanced in a use-dependent manner at higher stimulation rates. The voltage-dependence of inactivation was shifted in the hyperpolarizing direction, and recovery from inactivation was slowed by BBG. The most dramatic effect of BBG was to slow recovery from inactivation after long depolarizations, with 3 µM BBG increasing half-time for recovery (measured at -120 mV) from 24 to 854 ms after a 10-s step to 0 mV. These results were mimicked by a kinetic model in which BBG binds weakly to resting channels (K(d) = 170 µM) but tightly to fast-inactivated channels (K(d) = 5 µM) and even more tightly (K(d) = 0.2 µM) to slow-inactivated channels. In contrast to BBG, the structurally related food-coloring dye Brilliant Blue FCF had very little effect at concentrations up to 30 µM. These results show that BBG inhibits voltage-gated sodium channels at micromolar concentrations. Although BBG inhibition of sodium channels is less potent than inhibition of P2X7 receptors, there may be significant inhibition of sodium channels at BBG concentrations achieved in spinal cord or brain during experimental treatment of spinal cord injury or Huntington's disease. Considered as a sodium channel blocker, BBG is remarkably potent, acting with more than 10-fold greater potency than lacosamide, another blocker thought to bind to slow-inactivated channels.


Asunto(s)
Activación del Canal Iónico/fisiología , Neuronas/metabolismo , Colorantes de Rosanilina/metabolismo , Bloqueadores de los Canales de Sodio/metabolismo , Canales de Sodio/metabolismo , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Activación del Canal Iónico/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Receptores Purinérgicos P2X7/metabolismo , Colorantes de Rosanilina/farmacología , Bloqueadores de los Canales de Sodio/farmacología
19.
Biochim Biophys Acta ; 1813(3): 448-55, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21232561

RESUMEN

Mutations in cereblon (CRBN), a substrate binding component of the E3 ubiquitin ligase complex, cause a form of mental retardation in humans. However, the cellular proteins that interact with CRBN remain largely unknown. Here, we report that CRBN directly interacts with the α1 subunit of AMP-activated protein kinase (AMPK α1) and inhibits the activation of AMPK activation. The ectopic expression of CRBN reduces phosphorylation of AMPK α1 and, thus, inhibits the enzyme in a nutrient-independent manner. Moreover, AMPK α1 can be potently activated by suppressing endogenous CRBN using CRBN-specific small hairpin RNAs. Thus, CRBN may act as a negative modulator of the AMPK signaling pathway in vivo.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Portadoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteasas ATP-Dependientes , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/genética , Línea Celular , ADN Complementario/genética , Activación Enzimática , Regulación de la Expresión Génica , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Péptido Hidrolasas/genética , Unión Proteica , Ratas , Complejos de Ubiquitina-Proteína Ligasa , Ubiquitina-Proteína Ligasas
20.
Biochem Biophys Res Commun ; 399(4): 711-5, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20691658

RESUMEN

Cereblon is a protein encoded by the CRBN gene, which has been associated with human autosomal recessive nonsyndromic mental retardation. However, little is known about the regulation of CRBN expression. Following exposure of mouse neuroblastoma N2A cells to hypoxia/reoxygenation (H/R), mRNA and protein expression of CRBN were increased. To better understand how CRBN expression is regulated, the promoter region of the mouse CRBN gene was characterized functionally. Deletion mutations and site-directed mutagenesis led to the identification of a functional NF-E2-related factor 2 (Nrf2)-binding site. Electrophoretic mobility shift analysis indicated that Nrf2 binds to a putative binding site in the CRBN promoter. Nrf2 overexpression and tert-butylhydroquinone treatment enhanced CRBN protein expression. These results imply that Nrf2 stimulates CRBN gene transcription under H/R conditions in neuronal cells.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Oxígeno/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Hipoxia de la Célula , Línea Celular Tumoral , Ensayo de Cambio de Movilidad Electroforética , Eliminación de Gen , Hidroquinonas/farmacología , Discapacidad Intelectual/genética , Ratones , Mutagénesis Sitio-Dirigida , Neuronas/efectos de los fármacos , Regiones Promotoras Genéticas , Elementos de Respuesta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...