Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(18): e2311154, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38174953

RESUMEN

Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost-effective personalization of these implants for customized treatment in unique clinical and physical scenarios presents a substantial challenge. This challenge is further compounded by the need to ensure safety and minimal invasiveness, requiring essential attributes such as flexibility, biocompatibility, lightness, biodegradability, and wireless stimulation capability. Here, a flexible, biodegradable bioelectronic paper with homogeneously distributed wireless stimulation functionality for simple personalization of bioelectronic implants is introduced. The bioelectronic paper synergistically combines i) lead-free magnetoelectric nanoparticles (MENs) that facilitate electrical stimulation in response to external magnetic field and ii) flexible and biodegradable nanofibers (NFs) that enable localization of MENs for high-selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. The effectiveness of wireless electrical stimulation in vitro through enhanced neuronal differentiation of neuron-like PC12 cells and the controllability of their microstructural orientation are shown. Also, scalability, design flexibility, and rapid customizability of the bioelectronic paper are shown by creating various 3D macrostructures using simple paper crafting techniques such as cutting and folding. This platform holds promise for simple and rapid personalization of temporary bioelectronic implants for minimally invasive wireless stimulation therapies.


Asunto(s)
Implantes Absorbibles , Magnetismo , Medicina de Precisión , Tecnología Inalámbrica , Papel , Medicina de Precisión/instrumentación , Humanos , Masculino , Animales , Ratas , Encéfalo , Electrónica Médica/instrumentación
2.
Nat Commun ; 12(1): 3298, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078891

RESUMEN

Electrocaloric materials are promising working bodies for caloric-based technologies, suggested as an efficient alternative to the vapor compression systems. However, their materials efficiency defined as the ratio of the exchangeable electrocaloric heat to the work needed to trigger this heat remains unknown. Here, we show by direct measurements of heat and electrical work that a highly ordered bulk lead scandium tantalate can exchange more than a hundred times more electrocaloric heat than the work needed to trigger it. Besides, our material exhibits a maximum adiabatic temperature change of 3.7 K at an electric field of 40 kV cm-1. These features are strong assets in favor of electrocaloric materials for future cooling devices.

3.
Nanoscale Adv ; 3(2): 517-527, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36131735

RESUMEN

The practical application of 2D MXenes in electronic and energy fields has been hindered by the severe variation in the quality of MXene products depending on the parent MAX phases, manufacturing techniques, and preparation parameters. In particular, their synthesis has been impeded by the lack of studies reporting the synthesis of high-quality parent MAX phases. In addition, controllable and uniform deposition of 2D MXenes on various large-scale substrates is urgently required to use them practically. Herein, a method of pelletizing raw materials could synthesize a stoichiometric Ti3AlC2 MAX phase with high yield and processability, and fewer impurities. The Ti3AlC2 could be exfoliated into 1-2-atom-thick 2D Ti3C2T x flakes, and their applicability was confirmed by the deposition and additional alignment of the 2D flakes with tunable thickness and electrical properties. Moreover, a practical MXene ink was fabricated with rheological characterization. MXene ink exhibited much better thickness uniformity while retaining excellent electrical performances (e.g., sheet resistance, electromagnetic interference shielding ability) as those of a film produced by vacuum filtration. The direct functional integration of MXenes on various substrates is expected to initiate new and unexpected MXene-based applications.

4.
Nanoscale Adv ; 2(8): 3131-3149, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36134257

RESUMEN

Current piezoelectric device systems need a significant reduction in size and weight so that electronic modules of increasing capacity and functionality can be incorporated into a great range of applications, particularly in energy device platforms. The key question for most applications is whether they can compete in the race of down-scaling and an easy integration with highly adaptable properties into various system technologies such as nano-electro-mechanical systems (NEMS). Piezoelectric NEMS have potential to offer access to a parameter space for sensing, actuating, and powering, which is inflential and intriguing. Fortunately, recent advances in modelling, synthesis, and characterization techniques are spurring unprecedented developments in a new field of piezoelectric nano-materials and devices. While the need for looking more closely at the piezoelectric nano-materials is driven by the relentless drive of miniaturization, there is an additional motivation: the piezoelectric materials, which are showing the largest electromechanical responses, are currently toxic lead (Pb)-based perovskite materials (such as the ubiquitous Pb(Zr,Ti)O3, PZT). This is important, as there is strong legislative and moral push to remove toxic lead compounds from commercial products. By far, the lack of viable alternatives has led to continuing exemptions to allow their temporary use in piezoelectric applications. However, the present exemption will expire soon, and the concurrent improvement of lead-free piezoelectric materials has led to the possibility that no new exemption will be granted. In this paper, the universal approaches and recent progresses in the field of lead-free piezoelectric nano-materials, initially focusing on hybrid composite materials as well as individual nanoparticles, and related energy harvesting devices are systematically elaborated. The paper begins with a short introduction to the properties of interest in various piezoelectric nanomaterials and a brief description of the current state-of-the-art for lead-free piezoelectric nanostructured materials. We then describe several key methodologies for the synthesis of nanostructure materials including nanoparticles, followed by the discussion on the critical current and emerging applications in detail.

5.
Eur J Hum Genet ; 28(2): 202-212, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31570784

RESUMEN

Next-generation sequencing (NGS) is replacing other molecular techniques to become the de facto gene diagnostics approach, transforming the speed of diagnosis for patients and expanding opportunities for precision medicine. Consequently, for accredited laboratories as well as those seeking accreditation, both objective measures of quality and external review of laboratory processes are required. External quality assessment (EQA), or Proficiency Testing (PT), can assess a laboratory's service through an independent external agency, the EQA provider. The analysis of a growing number of genes and whole exome and genomes is now routine; therefore, an EQA must be delivered to enable all testing laboratories to participate. In this paper, we describe the development of a unique platform and gene target independent EQA scheme for NGS, designed to scale from current to future requirements of clinical diagnostic laboratories testing for germline and somatic variants. The EQA results from three annual rounds indicate that clinical diagnostic laboratories are providing an increasingly high-quality NGS service and variant calling abilities are improving. From an EQA provider perspective, challenges remain regarding delivery and performance criteria, as well as in analysing similar NGS approaches between cohorts with meaningful metrics, sample sourcing and data formats.


Asunto(s)
Pruebas Genéticas/normas , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Neoplasias/genética , Garantía de la Calidad de Atención de Salud/métodos , Análisis de Secuencia de ADN/normas , Algoritmos , Humanos , Neoplasias/diagnóstico , Reproducibilidad de los Resultados
6.
Small ; 15(5): e1804426, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30624025

RESUMEN

Porous semiconductors attract great interest due to their unique structural characteristics of high surface area as well as their intrinsic optical and electronic properties. In this study, synthesis of inorganic-organic 2D CdSe slabs-diaminooctane (DAO) porous quantum net structures is demonstrated. It is found that the hybrid 2D CdSe-DAO lamellar structures are disintegrated into porous net structures, maintaining an ultrathin thickness of ≈1 nm in CdSe slabs. Furthermore, the CdSe slabs in quantum nets show the highly shifted excitonic transition in the absorption spectrum, demonstrating their strongly confined electronic structures. The possible formation mechanism of this porous structure is investigated with the control experiments of the synthesis using n-alkyldiamines with various hydrocarbon chain lengths and ligand exchange of DAO with oleylamine. It is suggested that a strong van der Waals interaction among long chain DAO may exert strong tensile stress on the CdSe slabs, eventually disintegrating slabs. The thermal decomposition of CdSe-DAO quantum nets is further studied to form well-defined CdSe nanorods. It is believed that the current CdSe-DAO quantum nets will offer a new type of porous semiconductors nanostructures under a strong quantum-confinement regime, which can be applied to various technological areas of catalysts, electronics, and optoelectronics.

7.
Nat Commun ; 7: 13403, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27834369

RESUMEN

Output power of thermoelectric generators depends on device engineering minimizing heat loss as well as inherent material properties. However, the device engineering has been largely neglected due to the limited flat or angular shape of devices. Considering that the surface of most heat sources where these planar devices are attached is curved, a considerable amount of heat loss is inevitable. To address this issue, here, we present the shape-engineerable thermoelectric painting, geometrically compatible to surfaces of any shape. We prepared Bi2Te3-based inorganic paints using the molecular Sb2Te3 chalcogenidometalate as a sintering aid for thermoelectric particles, with ZT values of 0.67 for n-type and 1.21 for p-type painted materials that compete the bulk values. Devices directly brush-painted onto curved surfaces produced the high output power of 4.0 mW cm-2. This approach paves the way to designing materials and devices that can be easily transferred to other applications.

8.
Sci Rep ; 6: 31739, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27545094

RESUMEN

Lead-based relaxor ferroelectrics are key functional materials indispensable for the production of multilayer ceramic capacitors and piezoelectric transducers. Currently there are strong efforts to develop novel environmentally benign lead-free relaxor materials. The structural origins of the relaxor state and the role of composition modifications in these lead-free materials are still not well understood. In the present contribution, the solid-solution (100-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-xBT), a prototypic lead-free relaxor is studied by the combination of solid-state nuclear magnetic resonance (NMR) spectroscopy, dielectric measurements and ab-initio density functional theory (DFT). For the first time it is shown that the peculiar composition dependence of the EFG distribution width (ΔQISwidth) correlates strongly to the dispersion in dielectric permittivity, a fingerprint of the relaxor state. Significant disorder is found in the local structure of BNT-xBT, as indicated by the analysis of the electric field gradient (EFG) in (23)Na 3QMAS NMR spectra. Aided by DFT calculations, this disorder is attributed to a continuous unimodal distribution of octahedral tilting. These results contrast strongly to the previously proposed coexistence of two octahedral tilt systems in BNT-xBT. Based on these results, we propose that considerable octahedral tilt disorder may be a general feature of these oxides and essential for their relaxor properties.

9.
Sci Rep ; 6: 22820, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26955960

RESUMEN

Understanding coupling of ferroic properties over grain boundaries and within clusters of grains in polycrystalline materials is hindered due to a lack of direct experimental methods to probe the behaviour of individual grains in the bulk of a material. Here, a variant of three-dimensional X-ray diffraction (3D-XRD) is used to resolve the non-180° ferroelectric domain switching strain components of 191 grains from the bulk of a polycrystalline electro-ceramic that has undergone an electric-field-induced phase transformation. It is found that while the orientation of a given grain relative to the field direction has a significant influence on the phase and resultant domain texture, there are large deviations from the average behaviour at the grain scale. It is suggested that these deviations arise from local strain and electric field neighbourhoods being highly heterogeneous within the bulk polycrystal. Additionally, the minimisation of electrostatic potentials at the grain boundaries due to interacting ferroelectric domains must also be considered. It is found that the local grain-scale deviations average out over approximately 10-20 grains. These results provide unique insight into the grain-scale interactions of ferroic materials and will be of value for future efforts to comprehensively model these and related materials at that length-scale.

10.
J Phys Condens Matter ; 24(36): 365901, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22907150

RESUMEN

The effect of LaFeO(3) addition to Bi(1/2)(Na(0.78)K(0.22))(1/2)TiO(3) ceramics on the phase stability and macroscopic functional properties was investigated. Similarly to other chemical modifiers known in the literature, LaFeO(3) addition suppresses an electric-field-induced long-range ferroelectric order, giving rise to a giant unipolar strain of ~0.3% at 2 mol% LaFeO(3) addition. Time-dependent changes in polarization and strain hysteresis loops both during successive electrical cycling and after removal of the electric field suggest that a specimen with 2 mol% LaFeO(3) consists of both ergodic and nonergodic phases, which is unique among the known relaxor materials.

11.
Acta Crystallogr A ; 63(Pt 3): 229-33, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17435286

RESUMEN

The composition planes of the inversion boundary induced by the addition of Sb2O3 to ZnO ceramics were analyzed crystallographically by the application of electron back-scattered diffraction (EBSD) analysis and stereographic projection techniques. The inversion boundary was determined to consist of three discrete composition planes, {0001}, {1011}, {1010}.


Asunto(s)
Antimonio/química , Cerámica/química , Óxido de Zinc/química , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...