Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.324
Filtrar
1.
Sci Justice ; 64(5): 509-520, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277333

RESUMEN

In forensic facial comparison, questioned-source images are usually captured in uncontrolled environments, with non-uniform lighting, and from non-cooperative subjects. The poor quality of such material usually compromises their value as evidence in legal proceedings. On the other hand, in forensic casework, multiple images of the person of interest are usually available. In this paper, we propose to aggregate deep neural network embeddings from various images of the same person to improve the performance in forensic comparison of facial images. We observe significant performance improvements, especially for low-quality images. Further improvements are obtained by aggregating embeddings of more images and by applying quality-weighted aggregation. We demonstrate the benefits of this approach in forensic evaluation settings with the development and validation of common-source likelihood ratio systems and report improvements in Cllr both for CCTV images and for social media images.

2.
J Strength Cond Res ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303201

RESUMEN

ABSTRACT: Cardoso, F, Costa, MJ, Colaço, P, Vilas-Boas, JP, Pinho, JC, Pyne, DB, and Fernandes, RJ. Ventilatory and perceived ergogenic effects of mandibular forward repositioning during running at maximal oxygen uptake intensity. J Strength Cond Res XX(X): 000-000, 2024-Wearing an intraoral dental splint may enhance ventilatory function and exercise performance. Nineteen runners performed on a 400-m outdoor track: (a) an incremental protocol to assess the velocity at maximal oxygen uptake (vV̇o2max) and (b) 2 square wave bouts wearing 2 intraoral splints (with and without mandibular forward repositioning). The time until exhaustion at vV̇o2max (TLimv V̇o2max), ventilatory variables, oxygen uptake (V̇o2) kinetics, energetic profiling, perceived exertion and kinematics, were all measured. Ventilatory data were assessed breath-by-breath and perceived exertion evaluated using the Borg 6-20-point scale at the end of TLimv V̇o2max bouts. Images were recorded by video cameras (120 Hz) and kinematic measures retrieved using Kinovea. A paired t test was computed for comparison of splints (p ≤ 0.05). With (vs. without) mandibular forward repositioning, runners increased their TLimv V̇o2max by ∼6% (p = 0.03), coupled with higher ventilation (151 ± 22 vs. 147 ± 23 L·min-1, p = 0.04), end-tidal oxygen tension (114.3 ± 3.7 vs. 112.9 ± 3.9 mm Hg, p = 0.003), and lower inspiratory time (0.526 ± 0.083 vs. 0.540 ± 0.090 seconds, p = 0.02), despite similar V̇o2 kinetics (e.g., 49.0 ± 8.7 vs. 47.7 ± 8.6 ml∙kg∙min-1 of fast component amplitude) being observed. The energy expenditure was ∼8% higher (p = 0.03) with the mandible forward, coupled with lower perceived exertion scores (p = 0.04). Mandibular forward repositioning was effective in acutely improving running performance at vV̇o2max with ergogenic effects on ventilatory and perceived variables.

3.
Mol Phylogenet Evol ; 201: 108192, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39255869

RESUMEN

Chitin-synthase (CHS) is found in most eukaryotes and has a complex evolutionary history. Research into CHS has mainly been in the context of biomineralization of mollusc shells an area of high interest due to the consequences of ocean acidification. Exploration of CHS at the genomic level in molluscs, the evolution of isoforms, their tissue distribution, and response to environmental challenges are largely unknown. Exploiting the extensive molecular resources for mollusc species it is revealed that bivalves possess the largest number of CHS genes (12-22) reported to date in eukaryotes. The evolutionary tree constructed at the class level of molluscs indicates four CHS Type II isoforms (A-D) probably existed in the most recent common ancestor, and Type II-A (Type II-A-1/Type II-A-2) and Type II-C (Type II-C-1/Type II-C-2) underwent further differentiation. Non-specific loss of CHS isoforms occurred at the class level, and in some Type II (B-D groups) isoforms the myosin head domain, which is associated with shell formation, was not preserved and highly species-specific tissue expression of CHS isoforms occurred. These observations strongly support the idea of CHS functional diversification with shell biomineralization being one of several important functions. Analysis of transcriptome data uncovered the species-specific potential of CHS isoforms in shell formation and a species-specific response to ocean acidification (OA). The impact of OA was not CHS isoform-dependent although in Mytilus, Type I-B and Type II-D gene expression was down-regulated in both M. galloprovincialis and M. coruscus. In summary, during CHS evolution the gene family expanded in bivalves generating a large diversity of isoforms with different structures and with a ubiquitous tissue distribution suggesting that chitin is involved in many biological functions. These findings provide insight into CHS evolution in molluscs and lay the foundation for research into their function and response to environmental changes.

4.
Front Vet Sci ; 11: 1451516, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257638

RESUMEN

This study evaluates the effect of prolonged feeding with a high inclusion level of Spirulina, combined with peptidases, on broiler chicken's growth performance, digesta viscosity, carcass attributes and meat quality. The experiment involved 120 male broilers divided into 40 battery brooders, each housing 3 birds. Post 7-day acclimatisation with a corn and soybean-based diet, the birds were provided with one of four diets: a corn and soybean meal-based diet (CON), a mix incorporating 15% Spirulina (SP), a Spirulina-rich mix supplemented with 0.025% of commercial VemoZyme® P (SPV), or a Spirulina-rich mix supplemented with 0.10% of porcine pancreatin (SPP). The CON group had higher body weight and weight gain (p < 0.001) and a lower feed conversion ratio (p < 0.001) from day 7-21, compared to the Spirulina-fed groups. Spirulina-fed chickens significantly increased ileum viscosity (p < 0.05). Spirulina also elevated the weight (p < 0.05) of the duodenum and the length (p < 0.001) of the entire gastrointestinal tract compared to CON. Breast and thigh muscles from Spirulina-fed broilers displayed higher values of yellowness (b*) (p < 0.001), pigments (p < 0.05), and n-3 PUFA (p < 0.01), while n-6/n-3 ratio (p < 0.001) and α-tocopherol (p < 0.001) decreased relative to the CON. In conclusion, the introduction of a high level of Spirulina into broiler diets for an extended duration, has the potential to diminish birds' growth performance, possibly due to increased digesta viscosity. However, it does enhance the nutritional quality of the meat.

5.
Polymers (Basel) ; 16(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39274178

RESUMEN

In response to heightened environmental awareness, various industries, including the civil and automotive sector, are contemplating a shift towards the utilization of more sustainable materials. For adhesive bonding, this necessitates the exploration of materials derived from renewable sources, commonly denoted as bio-adhesives. This study focuses on a bio-adhesive L-joint, which is a commonly employed configuration in the automotive sector for creating bonded structural components with significant bending stiffness. In this investigation, the behavior of joints composed of pine wood and bio-based adhesives was studied. Two distinct configurations were studied, differing solely in the fiber orientation of the wood. The research combined experimental testing and finite element modeling to analyze the strength of the joints and determine their failure mode when subjected to tensile loading conditions. The findings indicate that the configuration of the joint plays a crucial role in its overall performance, with one of the solutions demonstrating higher strength. Additionally, a good degree of agreement was observed between the experimental and numerical analyses for one of the configurations, while the consideration of the maximum principal stress failure predictor (MPSFP) proved to accurately predict the location for crack propagation in both configurations.

6.
J Funct Morphol Kinesiol ; 9(3)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39311261

RESUMEN

We investigated the acute biophysical responses of changing the mandibular position during a rowing incremental protocol. A World-class 37-year-old male rower performed two 7 × 3 min ergometer rowing trials, once with no intraoral splint (control) and the other with a mandibular forward repositioning splint (splint condition). Ventilatory, kinematics and body electromyography were evaluated and compared between trials (paired samples t-test, p ≤ 0.05). Under the splint condition, oxygen uptake was lower, particularly at higher exercise intensities (67.3 ± 2.3 vs. 70.9 ± 1.5 mL·kg-1·min-1), and ventilation increased during specific rowing protocol steps (1st-4th and 6th). Wearing the splint condition led to changes in rowing technique, including a slower rowing frequency ([18-30] vs. [19-32] cycles·min-1) and a longer propulsive movement ([1.58-1.52] vs. [1.56-1.50] m) than the control condition. The splint condition also had a faster propulsive phase and a prolonged recovery period than the control condition. The splint reduced peak and mean upper body muscle activation, contrasting with an increase in lower body muscle activity, and generated an energetic benefit by reducing exercise cost and increasing rowing economy compared to the control condition. Changing the mandibular position benefited a World-class rower, supporting the potential of wearing an intraoral splint in high-level sports, particularly in rowing.

7.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39201249

RESUMEN

The periodontium is a complex hierarchical structure composed of alveolar bone, periodontal ligament, cementum, and gingiva. Periodontitis is an inflammatory disease that damages and destroys the periodontal tissues supporting the tooth. Periodontal therapies aim to regenerate the lost tissues, yet current treatments lack the integration of multiple structural/biochemical instructive cues to induce a coordinated regeneration, which leads to limited clinical outcomes. Hierarchical biomaterial scaffolds offer the opportunity to recreate the organization and architecture of the periodontium with distinct compartments, providing structural biomimicry that facilitates periodontal regeneration. Various scaffolds have been fabricated and tested preclinically, showing positive regenerative results. This review provides an overview of the recent research on hierarchical scaffolds for periodontal tissue engineering (TE). First, the hierarchical structure of the periodontium is described, covering the limitations of the current treatments used for periodontal regeneration and presenting alternative therapeutic strategies, including scaffolds and biochemical factors. Recent research regarding hierarchical scaffolds is highlighted and discussed, in particular, the scaffold composition, fabrication methods, and results from in vitro/in vivo studies are summarized. Finally, current challenges associated with the application of hierarchical scaffolds for periodontal TE are debated and future research directions are proposed.


Asunto(s)
Materiales Biocompatibles , Periodoncio , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Animales , Regeneración , Ligamento Periodontal/citología , Periodontitis/terapia
8.
J Pediatr (Rio J) ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39178912

RESUMEN

OBJECTIVE: The analysis of abdominal radiography is essential for the diagnosis and management of necrotizing enterocolitis (NEC) in newborns (NB). Studies, however, show a lack of agreement among physicians in the interpretation of images. This study aims to evaluate the agreement in the radiological interpretation of the NEC between examiners from different specialties (interexaminer analysis) and between the same examiner at different times (intraexaminer analysis). METHODS: Cross-sectional study for concordance analysis using plain radiographs of the abdomen of NB with suspected or confirmed NEC. The study included two neonatologists (Neo), two surgeons (SU), and two radiologists (RD). The participants filled out a form with questions about the radiographic findings; regarding the presence of intestinal loop distension, the specialists answered subjectively (yes or no) and objectively (calculation of the ratio between loop diameter and lumbar vertebrae measurements). Kappa coefficients were calculated for agreement analysis. RESULTS: A total of 90 radiological images were analyzed. For the interexaminer evaluation, the agreement was low (kappa<0.4) in 30 % of the answers (Neo versus SU), 38 % (Neo versus RD), and 46 % (SU versus RD). In the intraexaminer evaluation, the neonatologist and the surgeon presented substantial or almost perfect agreement in 92 % of the answers, and the radiologist in 77 %. In the evaluation of intestinal loop distention, the greatest agreement between the specialties occurred when done objectively. CONCLUSION: The results confirmed the low intra- and interexaminer agreement in the radiological analysis of the NEC, reinforcing the importance of standardizing the methods of radiological interpretation of the disease.

9.
Mol Ecol Resour ; : e13996, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39099161

RESUMEN

The analysis of meta-omics data requires the utilization of several bioinformatics tools and proficiency in informatics. The integration of multiple meta-omics data is even more challenging, and the outputs of existing bioinformatics solutions are not always easy to interpret. Here, we present a meta-omics bioinformatics pipeline, Meta-Omics Software for Community Analysis (MOSCA), which aims to overcome these limitations. MOSCA was initially developed for analysing metagenomics (MG) and metatranscriptomics (MT) data. Now, it also performs MG and metaproteomics (MP) integrated analysis, and MG/MT analysis was upgraded with an additional iterative binning step, metabolic pathways mapping, and several improvements regarding functional annotation and data visualization. MOSCA handles raw sequencing data and mass spectra and performs pre-processing, assembly, annotation, binning and differential gene/protein expression analysis. MOSCA shows taxonomic and functional analysis in large tables, performs metabolic pathways mapping, generates Krona plots and shows gene/protein expression results in heatmaps, improving omics data visualization. MOSCA is easily run from a single command while also providing a web interface (MOSGUITO). Relevant features include an extensive set of customization options, allowing tailored analyses to suit specific research objectives, and the ability to restart the pipeline from intermediary checkpoints using alternative configurations. Two case studies showcased MOSCA results, giving a complete view of the anaerobic microbial communities from anaerobic digesters and insights on the role of specific microorganisms. MOSCA represents a pivotal advancement in meta-omics research, offering an intuitive, comprehensive, and versatile solution for researchers seeking to unravel the intricate tapestry of microbial communities.

10.
J Am Chem Soc ; 146(34): 24105-24113, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39143928

RESUMEN

The quest for sustainable strategies in molecular synthesis has spurred the emergence of photocatalysis as a particularly powerful technique. In recent years, the application of photocatalysis in this context has greatly promoted the development of asymmetric catalysis. Despite the impressive advances, enantioselective photoinduced strong arene C-H activations by cobalt catalysis remain unexplored. Herein, we report a strategy that merges organic photoredox catalysis and enantioselective cobalt-catalyzed C-H activation, enabling the regio- and stereoselective dual functionalization of indoles in an enantioselective fashion. Thereby, the assembly of various chiral indolo[2,3-c]isoquinolin-5-ones was realized with high enantioselectivities of up to 99%. The robustness of the cobaltaphotoredox catalysis was demonstrated through enantioselective C-H activation and annulations in a continuous flow to provide straightforward access to central and axially chiral molecules.

11.
Biomedicines ; 12(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39200121

RESUMEN

PURPOSE: A growing body of evidence has shown that electroencephalography (EEG) is an interesting method of assessing the underlying brain physiology associated with disordered eating. Using EEG, we sought to evaluate brain reactivity to hyper-palatable food cues in undergraduate students with disordered eating behavior (DEB). METHODS: After assessing the eating behaviors of twenty-six undergraduate students using the Eating Attitudes Test (EAT-26), electroencephalographic signals were recorded while the participants were presented with pictures of hyper-palatable food. The current study used a temporospatial principal component analysis (PCA) approach to identify event-related potential (ERP) responses that differed between DEB and non-DEB individuals. RESULTS: A temporospatial PCA applied to the ERPs identified a positivity with a maximum amplitude at 347 ms at the occipital-temporal electrodes in response to pictures of hyper-palatable food. This positivity was correlated with the EAT-26 scores. Participants with DEB showed reduced positivities in this component compared with those without DEB. CONCLUSION: Our findings may reflect greater motivated attention toward hyper-palatable food cues in undergraduate students with DEB. These results are an important step toward obtaining a more refined understanding of specific abnormalities related to reactivity to food cues in this population.

12.
BioData Min ; 17(1): 27, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198921

RESUMEN

Cardiovascular diseases are the main cause of death in the world and cardiovascular imaging techniques are the mainstay of noninvasive diagnosis. Aortic stenosis is a lethal cardiac disease preceded by aortic valve calcification for several years. Data-driven tools developed with Deep Learning (DL) algorithms can process and categorize medical images data, providing fast diagnoses with considered reliability, to improve healthcare effectiveness. A systematic review of DL applications on medical images for pathologic calcium detection concluded that there are established techniques in this field, using primarily CT scans, at the expense of radiation exposure. Echocardiography is an unexplored alternative to detect calcium, but still needs technological developments. In this article, a fully automated method based on Convolutional Neural Networks (CNNs) was developed to detect Aortic Calcification in Echocardiography images, consisting of two essential processes: (1) an object detector to locate aortic valve - achieving 95% of precision and 100% of recall; and (2) a classifier to identify calcium structures in the valve - which achieved 92% of precision and 100% of recall. The outcome of this work is the possibility of automation of the detection with Echocardiography of Aortic Valve Calcification, a lethal and prevalent disease.

13.
Braz J Microbiol ; 55(3): 2463-2471, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38963475

RESUMEN

Cryptococcus gattii, an environmental fungus, is one of the agents of cryptococcosis. The influence of agrochemicals on fungal resistance to antifungals is widely discussed. However, the effects of benomyl (BEN) on fungal interaction with different hosts is still to be understood. Here we studied the influence of adaptation to BEN in the interaction with a plant model, phagocytes and with Tenebrio molitor. First, the strain C. gattii L24/01 non-adapted (NA), adapted (A) to BEN, and adapted with further culture on drug-free media (10p) interact with Nicotiana benthamiana, with a peak in the yeast burden on the 7th day post-inoculation. C. gattii L24/01 A and 10p provided lower fungal burden, but these strains increased cell diameter and capsular thickness after the interaction, together with decreased fungal growth. The strains NA and A showed reduced ergosterol levels, while 10p exhibited increased activity of laccase and urease. L24/01 A recovered from N. benthamiana was less engulfed by murine macrophages, with lower production of reactive oxygen species. This phenotype was accompanied by increased ability of this strain to grow inside macrophages. Otherwise, L24/01 A showed reduced virulence in the T. molitor larvae model. Here, we demonstrate that the exposure to BEN, and interaction with plants interfere in the morphophysiology and virulence of the C. gattii.


Asunto(s)
Cryptococcus gattii , Nicotiana , Cryptococcus gattii/efectos de los fármacos , Cryptococcus gattii/crecimiento & desarrollo , Cryptococcus gattii/metabolismo , Cryptococcus gattii/fisiología , Animales , Ratones , Nicotiana/microbiología , Macrófagos/microbiología , Criptococosis/microbiología , Tenebrio/microbiología , Agroquímicos/farmacología , Antifúngicos/farmacología , Enfermedades de las Plantas/microbiología
14.
Gels ; 10(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39057446

RESUMEN

Functional articular cartilage regeneration remains an unmet medical challenge, increasing the interest for innovative biomaterial-based tissue engineering (TE) strategies. Hydrogels, 3D macromolecular networks with hydrophilic groups, present articular cartilage-like features such as high water content and load-bearing capacity. In this study, 3D porous polyethylene glycol diacrylate (PEGDA) hydrogels were fabricated combining the gas foaming technique and a UV-based crosslinking strategy. The 3D porous PEGDA hydrogels were characterized in terms of their physical, structural and mechanical properties. Our results showed that the size of the hydrogel pores can be modulated by varying the initiator concentration. In vitro cytotoxicity tests showed that 3D porous PEGDA hydrogels presented high biocompatibility both with human chondrocytes and osteoblast-like cells. Importantly, the 3D porous PEGDA hydrogels supported the viability and chondrogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cell (hBM-MSC)-based spheroids as demonstrated by the positive staining of typical cartilage extracellular matrix (ECM) (glycosaminoglycans (GAGs)) and upregulation of chondrogenesis marker genes. Overall, the produced 3D porous PEGDA hydrogels presented cartilage-like mechanical properties and supported MSC spheroid chondrogenesis, highlighting their potential as suitable scaffolds for cartilage TE or disease modelling strategies.

15.
Toxics ; 12(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39058164

RESUMEN

Chlorpyrifos, an organophosphate insecticide widely used to control agricultural pests, poses a significant environmental threat due to its toxicity and persistence in soil and water. Our work aimed to evaluate the acute (survival) and chronic (regeneration, locomotion, and reproduction) toxicity of chlorpyrifos to the non-target freshwater planarian Girardia tigrina. The 48 h lethal concentration (LC50) of the commercial formulation, containing 480 g L-1 of chlorpyrifos, the active ingredient, was determined to be 622.8 µg a.i. L-1 for planarians. Sublethal effects were translated into a significant reduction in locomotion and delayed head regeneration (lowest observed effect concentration-LOEC = 3.88 µg a.i. L-1). Additionally, chlorpyrifos exposure did not affect planarian fecundity or fertility. Overall, this study demonstrates the potential of chlorpyrifos-based insecticides to harm natural populations of freshwater planarians at environmentally relevant concentrations. The observed toxicity emphasizes the need for stricter regulations and careful management of chlorpyrifos usage to mitigate its deleterious effects on aquatic ecosystems. By understanding the specific impacts on non-target organisms like G. tigrina, we can make more informed suggestions regarding the usage and regulation of organophosphate insecticides, ultimately promoting sustainable agricultural practices and environmental conservation.

16.
J Environ Manage ; 366: 121622, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972185

RESUMEN

Land-use land-cover (LULC) change contributes to major ecological impacts, particularly in areas undergoing land abandonment, inducing modifications on habitat structure and species distributions. Alternative land-use policies are potential solutions to alleviate the negative impacts of contemporary tendencies of LULC change on biodiversity. This work analyzes these tendencies in the Montesinho Natural Park (Portugal), an area representative of European abandoned mountain rural areas. We built ecological niche models for 226 species of vertebrates (amphibians, reptiles, birds, and mammals) and vascular plants, using a consensus modelling approach available in the R package 'biomod2'. We projected the models to contemporary (2018) and future (2050) LULC scenarios, under four scenarios aiming to secure relevant ecosystem services and biodiversity conservation for 2050: an afforestation and a rewilding scenario, focused on climate-smart management strategies, and a farmland and an agroforestry recovery scenario, based on re-establishing human traditional activities. We quantified the influences of these scenarios on biodiversity through species habitat suitability changes for 2018-2050. We analyzed how these management strategies could influence indices of functional diversity (functional richness, functional evenness and functional dispersion) within the park. Habitat suitability changes revealed complementary patterns among scenarios. Afforestation and rewilding scenarios benefited more species adapted to habitats with low human influence, such as forests and open woodlands. The highest functional richness and dispersion was predicted for rewilding scenarios, which could improve landscape restoration and provide opportunities for the expansion and recolonization of forest areas by native species. The recovery of traditional farming and agroforestry activities results in the lowest values of functional richness, but these strategies contribute to complex landscape matrices with diversified habitats and resources. Moreover, this strategy could offer opportunities for fire suppression and increase landscape fire resistance. An integrative approach reconciling rewilding initiatives with the recovery of extensive agricultural and agroforestry activities is potentially an harmonious strategy for supporting the provision of ecosystem services while securing biodiversity conservation and functional diversity within the natural park.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Granjas , Animales , Bosques , Clima
17.
Angew Chem Int Ed Engl ; : e202407384, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959168

RESUMEN

Skeletal molecular editing gained considerable recent momentum and emerged as a uniquely powerful tool for late-stage diversifications. Thus far, superstoichiometric amounts of costly hypervalent iodine(III) reagents were largely required for skeletal indole editing. In contrast, we herein show that electricity enables sustainable nitrogen atom insertion reactions to give bio-relevant quinazoline scaffolds without stoichiometric chemical redox-waste product. The transition metal-free electro-editing was enabled by the oxygen reduction reaction (ORR) and proved robust on scale, while tolerating a variety of valuable functional groups.

18.
Mol Cell Endocrinol ; 592: 112324, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38944371

RESUMEN

Genomes and transcriptomes from diverse organisms are providing a wealth of data to explore the evolution and origin of neuropeptides and their receptors in metazoans. While most neuropeptide-receptor systems have been extensively studied in vertebrates, there is still a considerable lack of understanding regarding their functions in invertebrates, an extraordinarily diverse group that account for the majority of animal species on Earth. Cephalochordates, commonly known as amphioxus or lancelets, serve as the evolutionary proxy of the chordate ancestor. Their key evolutionary position, bridging the invertebrate to vertebrate transition, has been explored to uncover the origin, evolution, and function of vertebrate neuropeptide systems. Amphioxus genomes exhibit a high degree of sequence and structural conservation with vertebrates, and sequence and functional homologues of several vertebrate neuropeptide families are present in cephalochordates. This review aims to provide a comprehensively overview of the recent findings on neuropeptides and their receptors in cephalochordates, highlighting their significance as a model for understanding the complex evolution of neuropeptide signaling in vertebrates.


Asunto(s)
Evolución Molecular , Neuropéptidos , Receptores de Neuropéptido , Vertebrados , Animales , Neuropéptidos/metabolismo , Neuropéptidos/genética , Receptores de Neuropéptido/metabolismo , Receptores de Neuropéptido/genética , Vertebrados/genética , Vertebrados/metabolismo , Anfioxos/genética , Anfioxos/metabolismo , Filogenia , Humanos , Evolución Biológica , Transducción de Señal
19.
ACS Omega ; 9(23): 24987-24997, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882168

RESUMEN

Microwave-assisted pyrolysis (MAP) is a cutting-edge technology that converts biomass into fuels, chemicals, and materials. In this study, an Arduino was used to control and automate a MAP system built from a microwave oven with a cordierite chamber filled with silicon carbide. Sugar cane bagasse was pyrolyzed at 250, 350, 450, and 550 °C to validate the MAP system and obtain pyrolytic products with different yields and chemical compositions. Lower temperatures led to high biochar yields, but the highest surface area of 25.14 m2 g-1 was only achieved at 550 °C. By contrast, higher temperatures favored the recovery of pyrolysis liquids. BET and scanning electron microscopy analyses revealed a porous biochar structure, while Fourier transform infrared spectroscopy analysis showed that the availability of functional groups on the biochar surface decreased with an increase in pyrolysis temperature. GC-MS analysis quantified valuable low molecular mass compounds in pyrolysis liquids, including aldehydes, ketones, phenols, and alcohols. With its unprecedented hybrid heating device, the MAP system promoted suitable heating rates (31.9 °C min-1) and precise temperature control (only 19 °C of set point variation), generating pyrolysis products devoid of microwave susceptor interferences. Therefore, MAP provided a rapid, safe, and efficient means of depolymerizing biomass, thus holding promise for biorefinery applications.

20.
Org Lett ; 26(23): 4998-5003, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38838343

RESUMEN

The direct synthesis of C4-acyl indoles deprived of C2 and C3 substituents has proven to be challenging, with scarce efficient synthetic routes being reported. Herein, we disclose a highly site-selective palladium-catalyzed C-H acylation for the construction of C4-acyl indoles via a Catellani-Lautens cyclization strategy. In addition, we systematically studied the ortho C-H acylation mechanism of iodoaniline through density functional theory (DFT) calculations and combined experimental results to elucidate the principle of high chemoselectivity brought by triazine benzoate as an acylation reagent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA