Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(1): e0076023, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38032201

RESUMEN

Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) is the most virulent cotton wilt pathogen in the United States. There is an urgent need for improved detection and diagnostics to combat the spread of FOV4. To help meet this challenge, we report the de novo assembly of two pathogenic isolates of FOV4 from California.

2.
Microbiol Resour Announc ; 13(1): e0070223, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38099678

RESUMEN

Fusarium wilt [Fusarium oxysporum f. sp. vasinfectum (FOV)] in cotton is a widespread soilborne pathogen that causes vascular plant disease and is responsible for substantial crop losses worldwide. FOV race 1 (FOV1) is well established across almost all cotton production regions, especially in the USA. Herein, we report a high-quality whole-genome sequence, assembly, and gene annotation of a FOV1 isolate from California.

3.
J Exp Bot ; 74(1): 308-320, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36222825

RESUMEN

Sulfate assimilation is an essential pathway of plant primary metabolism, regulated by the demand for reduced sulfur (S). The S-containing tripeptide glutathione (GSH) is the key signal for such regulation in Arabidopsis, but little is known about the conservation of these regulatory mechanisms beyond this model species. Using two model monocot species, C3 rice (Oryza sativa) and C4Setaria viridis, and feeding of cysteine or GSH, we aimed to find out how conserved are the regulatory mechanisms described for Arabidopsis in these species. We showed that while in principle the regulation is similar, there are many species-specific differences. For example, thiols supplied by the roots are translocated to the shoots in rice but remain in the roots of Setaria. Cysteine and GSH concentrations are highly correlated in Setaria, but not in rice. In both rice and Setaria, GSH seems to be the signal for demand-driven regulation of sulfate assimilation. Unexpectedly, we observed cysteine oxidation to sulfate in both species, a reaction that does not occur in Arabidopsis. This reaction is dependent on sulfite oxidase, but the enzyme(s) releasing sulfite from cysteine still need to be identified. Altogether our data reveal a number of unique features in the regulation of S metabolism in the monocot species and indicate the need for using multiple taxonomically distinct models to better understand the control of nutrient homeostasis, which is important for generating low-input crop varieties.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína/metabolismo , Plantas/metabolismo , Sulfatos/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
J Exp Bot ; 73(22): 7417-7433, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36226742

RESUMEN

The phytohormone cytokinin is implicated in a range of growth, developmental, and defense processes. A growing body of evidence supports a crosstalk between cytokinin and nutrient signaling pathways, such as nitrate availability. Cytokinin signaling regulates sulfur-responsive gene expression, but the underlying molecular mechanisms and their impact on sulfur-containing metabolites have not been systematically explored. Using a combination of genetic and pharmacological tools, we investigated the interplay between cytokinin signaling and sulfur homeostasis. Exogenous cytokinin triggered sulfur starvation-like gene expression accompanied by a decrease in sulfate and glutathione content. This process was uncoupled from the activity of the major transcriptional regulator of sulfate starvation signaling SULFUR LIMITATION 1 and an important glutathione-degrading enzyme, γ-glutamyl cyclotransferase 2;1, expression of which was robustly up-regulated by cytokinin. Conversely, glutathione accumulation was observed in mutants lacking the cytokinin receptor ARABIDOPSIS HISTIDINE KINASE 3 and in cytokinin-deficient plants. Cytokinin-deficient plants displayed improved root growth upon exposure to glutathione-depleting chemicals which was attributed to a higher capacity to maintain glutathione levels. These results shed new light on the interplay between cytokinin signaling and sulfur homeostasis. They position cytokinin as an important modulator of sulfur uptake, assimilation, and remobilization in plant defense against xenobiotics and root growth.


Asunto(s)
Citocininas , Azufre , Redes y Vías Metabólicas , Glutatión , Sulfatos
5.
FEBS Lett ; 595(12): 1696-1707, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33960401

RESUMEN

The transcriptional regulators of arsenic-induced gene expression remain largely unknown. Sulfur assimilation is tightly linked with arsenic detoxification. Here, we report that mutant alleles in the SLIM1 transcription factor are substantially more sensitive to arsenic than cadmium. Arsenic treatment caused high levels of oxidative stress in the slim1 mutants, and slim1 alleles were impaired in both thiol accumulation and sulfate accumulation. We further found enhanced arsenic accumulation in roots of slim1 mutants. Transcriptome analyses indicate an important role for SLIM1 in arsenic-induced tolerance mechanisms. The present study identifies the SLIM1 transcription factor as an essential component in arsenic tolerance and arsenic-induced gene expression. Our results suggest that the severe arsenic sensitivity of the slim1 mutants is caused by altered redox status.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arsénico , Proteínas de Unión al ADN , Resistencia a Medicamentos , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arsénico/metabolismo , Arsénico/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Plant Cell Environ ; 44(5): 1692-1706, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33554343

RESUMEN

Arsenic stress causes rapid transcriptional responses in plants. However, transcriptional regulators of arsenic-induced gene expression in plants remain less well known. To date, forward genetic screens have proven limited for dissecting arsenic response mechanisms. We hypothesized that this may be due to the extensive genetic redundancy present in plant genomes. To overcome this limitation, we pursued a forward genetic screen for arsenite tolerance using a randomized library of plants expressing >2,000 artificial microRNAs (amiRNAs). This library was designed to knock-down diverse combinations of homologous gene family members within sub-clades of transcription factor and transporter gene families. We identified six transformant lines showing an altered response to arsenite in root growth assays. Further characterization of an amiRNA line targeting closely homologous CBF and ERF transcription factors show that the CBF1,2 and 3 transcription factors negatively regulate arsenite sensitivity. Furthermore, the ERF34 and ERF35 transcription factors are required for cadmium resistance. Generation of CRISPR lines, higher-order T-DNA mutants and gene expression analyses, further support our findings. These ERF transcription factors differentially regulate arsenite sensitivity and cadmium tolerance.


Asunto(s)
Arabidopsis/metabolismo , Arsenitos/metabolismo , Cadmio/metabolismo , Pruebas Genéticas , MicroARNs/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Mutación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
7.
Front Plant Sci ; 11: 1267, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013946

RESUMEN

Global climate change is a challenge for efforts to ensure food security for future generations. It will affect crop yields through changes in temperature and precipitation, as well as the nutritional quality of crops. Increased atmospheric CO2 leads to a penalty in the content of proteins and micronutrients in most staple crops, with the possible exception of C4 crops. It is essential to understand the control of nutrient homeostasis to mitigate this penalty. However, despite the importance of mineral nutrition for plant performance, comparably less is known about the regulation of nutrient uptake and homeostasis in C4 plants than in C3 plants and mineral nutrition has not been a strong focus of the C4 research. Here we review what is known about C4 specific features of nitrogen and sulfur assimilation as well as of homeostasis of other essential elements. We identify the major knowledge gaps and urgent questions for future research. We argue that adaptations in mineral nutrition were an integral part of the evolution of C4 photosynthesis and should be considered in the attempts to engineer C4 photosynthetic mechanisms into C3 crops.

8.
Plant Physiol ; 184(4): 2120-2136, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33060195

RESUMEN

Sulfur, an indispensable constituent of many cellular components, is a growth-limiting macronutrient for plants. Thus, to successfully adapt to changing sulfur availability and environmental stress, a sulfur-deficiency response helps plants to cope with the limited supply. On the transcriptional level, this response is controlled by SULFUR LIMITATION1 (SLIM1), a member of the ETHYLENE-INSENSITIVE3-LIKE (EIL) transcription factor family. In this study, we identified EIL1 as a second transcriptional activator regulating the sulfur-deficiency response, subordinate to SLIM1/EIL3. Our comprehensive RNA sequencing analysis in Arabidopsis (Arabidopsis thaliana) allowed us to obtain a complete picture of the sulfur-deficiency response and quantify the contributions of these two transcription factors. We confirmed the key role of SLIM1/EIL3 in controlling the response, particularly in the roots, but showed that in leaves more than 50% of the response is independent of SLIM1/EIL3 and EIL1. RNA sequencing showed an additive contribution of EIL1 to the regulation of the sulfur-deficiency response but also identified genes specifically regulated through EIL1. SLIM1/EIL3 seems to have further functions (e.g. in the regulation of genes responsive to hypoxia or mediating defense at both low and normal sulfur supply). These results contribute to the dissection of mechanisms of the sulfur-deficiency response and provide additional possibilities to improve adaptation to sulfur-deficiency conditions.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Estrés Fisiológico/genética , Azufre/deficiencia , Azufre/metabolismo , Factores de Transcripción/metabolismo , Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Transcripción Genética
9.
Proc Natl Acad Sci U S A ; 117(21): 11836-11842, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32398372

RESUMEN

Systematic mappings of protein interactome networks have provided invaluable functional information for numerous model organisms. Here we develop PCR-mediated Linkage of barcoded Adapters To nucleic acid Elements for sequencing (PLATE-seq) that serves as a general tool to rapidly sequence thousands of DNA elements. We validate its utility by generating the ORFeome for Oryza sativa covering 2,300 genes and constructing a high-quality protein-protein interactome map consisting of 322 interactions between 289 proteins, expanding the known interactions in rice by roughly 50%. Our work paves the way for high-throughput profiling of protein-protein interactions in a wide range of organisms.


Asunto(s)
Sistemas de Lectura Abierta/genética , Oryza/genética , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Análisis de Secuencia de ADN/métodos , Biología Computacional/métodos , ADN de Plantas/genética , Bases de Datos Genéticas , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
10.
Plant Methods ; 15: 74, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31338114

RESUMEN

BACKGROUND: Green plants comprise two lineages: (1) the streptophytes that colonised land and (2) the chlorophytes that have adaptations to land but remained mostly aquatic. To better understand what made streptophytes so successful, we are currently establishing the chlorophyte alga Draparnaldia sp. (Chaetophorales, Chlorophyceae) as a model for comparative analyses between these two lineages. However, establishing Draparnaldia as a valuable model requires that it can be transformed. Thus, our goal is to develop a transformation protocol for this alga. RESULTS: We have established the first transformation protocol for Draparnaldia. This protocol is based on protoplast transformation by electroporation. It includes instructions on protoplast isolation, regeneration and transient transfection. It also provides a list of the effective selective agents for future Draparnaldia transformations. CONCLUSIONS: Our protocol opens a way for Draparnaldia functional genomics analyses. Moreover, it also provides an important base for establishment of stable transformation.

11.
Planta ; 250(3): 1005-1010, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31290030

RESUMEN

In her 1929 essay A Room of One's Own, Virginia Wolf famously wrote, "One cannot think well, love well, sleep well, if one has not dined well." While this popular quote is perhaps not the most inspiring, it is an elegant reminder that food and the cultural practices surrounding food are paramount for our wellbeing. However, in our quest to feed a growing global population, we have become focused on increasing the production of a few staple crops and overlooked hundreds or thousands of locally and regionally important crops that may represent the future of agriculture. The growing interest in identifying and developing promising new crops and novel food sources prompted the 1st Cologne Conference on Food for Future, which took place between the 5 and 7th of September 2018 at the Rautenstrauch-Joest museum in Cologne, Germany. It offered a unique platform for researchers, journalists, politicians, and entrepreneurs to present and discuss their views, visions, and concerns on the topics of Food Security. This interdisciplinary meeting acted as a stage to cover diverse aspects of crop science, food research, and food production in the context of global food and nutrition security. Three sessions accommodated scientific contributions on the topics of "Orphan Crops", "Functional food", and "Innovative food sources and production systems", and two public events (a public lecture and a plenary discussion) engaged the citizens with informative discussions on relevant and mediatic topics. With delegates from Africa, Europe, and the United States of America, the conference aimed at building bridges between different communities through scientific exchange.


Asunto(s)
Productos Agrícolas , Abastecimiento de Alimentos , Congresos como Asunto , Producción de Cultivos , Alimentos , Predicción
12.
J Exp Bot ; 70(16): 4197-4210, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31231775

RESUMEN

Plants are capable of synthesizing all the molecules necessary to complete their life cycle from minerals, water, and light. This plasticity, however, comes at a high energetic cost and therefore plants need to regulate their economy and allocate resources accordingly. Iron-sulfur (Fe-S) clusters are at the center of photosynthesis, respiration, amino acid, and DNA metabolism. Fe-S clusters are extraordinary catalysts, but their main components (Fe2+ and S2-) are highly reactive and potentially toxic. To prevent toxicity, plants have evolved mechanisms to regulate the uptake, storage, and assimilation of Fe and S. Recent advances have been made in understanding the cellular economy of Fe and S metabolism individually, and growing evidence suggests that there is dynamic crosstalk between Fe and S networks. In this review, we summarize and discuss recent literature on Fe sensing, allocation, use efficiency, and, when pertinent, its relationship to S metabolism. Our future perspectives include a discussion about the open questions and challenges ahead and how the plant nutrition field can come together to approach these questions in a cohesive and more efficient way.


Asunto(s)
Hierro/metabolismo , Plantas/metabolismo , Azufre/metabolismo , Crecimiento y Desarrollo , Minerales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética
13.
J Exp Bot ; 70(16): 4211-4221, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31124557

RESUMEN

The first product of sulfate assimilation in plants, cysteine, is a proteinogenic amino acid and a source of reduced sulfur for plant metabolism. Cysteine synthesis is the convergence point of the three major pathways of primary metabolism: carbon, nitrate, and sulfate assimilation. Despite the importance of metabolic and genetic coordination of these three pathways for nutrient balance in plants, the molecular mechanisms underlying this coordination, and the sensors and signals, are far from being understood. This is even more apparent in C4 plants, where coordination of these pathways for cysteine synthesis includes the additional challenge of differential spatial localization. Here we review the coordination of sulfate, nitrate, and carbon assimilation, and show how they are altered in C4 plants. We then summarize current knowledge of the mechanisms of coordination of these pathways. Finally, we identify urgent questions to be addressed in order to understand the integration of sulfate assimilation with carbon and nitrogen metabolism particularly in C4 plants. We consider answering these questions to be a prerequisite for successful engineering of C4 photosynthesis into C3 crops to increase their efficiency.


Asunto(s)
Carbono/metabolismo , Nitrógeno/metabolismo , Fotosíntesis , Plantas/metabolismo , Sulfatos/metabolismo , Ciclo del Carbono , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética
14.
Plant Direct ; 1(4): e00014, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31245663

RESUMEN

Transcription factors (TFs) regulate the expression of other genes to indirectly mediate stress resistance mechanisms. Therefore, when studying TF-mediated stress resistance, it is important to understand how TFs interact with genes in the genetic background. Here, we fine-mapped the aluminum (Al) resistance QTL Alt12.1 to a 44-kb region containing six genes. Among them is ART1, which encodes a C2H2-type zinc finger TF required for Al resistance in rice. The mapping parents, Al-resistant cv Azucena (tropical japonica) and Al-sensitive cv IR64 (indica), have extensive sequence polymorphism within the ART1 coding region, but similar ART1 expression levels. Using reciprocal near-isogenic lines (NILs) we examined how allele-swapping the Alt12.1 locus would affect plant responses to Al. Analysis of global transcriptional responses to Al stress in roots of the NILs alongside their recurrent parents demonstrated that the presence of the Alt12.1 from Al-resistant Azucena led to greater changes in gene expression in response to Al when compared to the Alt12.1 from IR64 in both genetic backgrounds. The presence of the ART1 allele from the opposite parent affected the expression of several genes not previously implicated in rice Al tolerance. We highlight examples where putatively functional variation in cis-regulatory regions of ART1-regulated genes interacts with ART1 to determine gene expression in response to Al. This ART1-promoter interaction may be associated with transgressive variation for Al resistance in the Azucena × IR64 population. These results illustrate how ART1 interacts with the genetic background to contribute to quantitative phenotypic variation in rice Al resistance.

16.
PLoS One ; 10(9): e0136606, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26327118

RESUMEN

Manganese (Mn) is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for Mn-polluted soils. In this study, we identified a new passive Mn-hyperaccumulator Eucalyptus grandis × E. urophylla during a field survey in southern China in July 2010. This hybrid can accumulate as much as 13,549 mg/kg DW Mn in its leaves. Our results from Scanning Electron Microscope (SEM) X-ray microanalysis indicate that Mn is distributed in the entire leaf and stem cross-section, especially in photosynthetic palisade, spongy mesophyll tissue, and stem xylem vessels. Results from size-exclusion chromatography coupled with ICP-MS (Inductively coupled plasma mass spectrometry) lead us to speculate that Mn associates with relatively high molecular weight proteins and low molecular weight organic acids, including tartaric acid, to avoid Mn toxicity. Our results provide experimental evidence that both proteins and organic acids play important roles in Mn detoxification in Eucalyptus grandis × E. urophylla. The key characteristics of Eucalyptus grandis × E. urophylla are an increased Mn translocation facilitated by transpiration through the xylem to the leaves and further distribution throughout the leaf tissues. Moreover, the Mn-speciation profile obtained for the first time in different cellular organelles of Eucalyptus grandis × E. urophylla suggested that different organelles have differential accumulating abilities and unique mechanisms for Mn-detoxification.


Asunto(s)
Eucalyptus/metabolismo , Manganeso/metabolismo , Hojas de la Planta/metabolismo , Biodegradación Ambiental , Pared Celular/metabolismo , Cloroplastos/química , Microanálisis por Sonda Electrónica , Eucalyptus/química , Manganeso/análisis , Microscopía Electrónica de Rastreo , Hojas de la Planta/química , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Suelo/química , Fracciones Subcelulares/química
17.
Mol Plant ; 7(9): 1455-1469, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24880337

RESUMEN

Plants and seeds are the main dietary sources of zinc, iron, manganese, and copper, but are also the main entry point for toxic elements such as cadmium into the food chain. We report here that an Arabidopsis oligopeptide transporter mutant, opt3-2, over-accumulates cadmium (Cd) in seeds and roots but, unexpectedly, under-accumulates Cd in leaves. The cadmium distribution in opt3-2 differs from iron, zinc, and manganese, suggesting a metal-specific mechanism for metal partitioning within the plant. The opt3-2 mutant constitutively up-regulates the Fe/Zn/Cd transporter IRT1 and FRO2 in roots, indicative of an iron-deficiency response. No genetic mutants that impair the shoot-to-root signaling of iron status in leaves have been identified. Interestingly, shoot-specific expression of OPT3 rescues the Cd sensitivity and complements the aberrant expression of IRT1 in opt3-2 roots, suggesting that OPT3 is required to relay the iron status from leaves to roots. OPT3 expression was found in the vasculature with preferential expression in the phloem at the plasma membrane. Using radioisotope experiments, we found that mobilization of Fe from leaves is severely affected in opt3-2, suggesting that Fe mobilization out of leaves is required for proper trace-metal homeostasis. When expressed in yeast, OPT3 does not localize to the plasma membrane, precluding the identification of the OPT3 substrate. Our in planta results show that OPT3 is important for leaf phloem-loading of iron and plays a key role regulating Fe, Zn, and Cd distribution within the plant. Furthermore, ferric chelate reductase activity analyses provide evidence that iron is not the sole signal transferred from leaves to roots in leaf iron status signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Cadmio/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Proteínas de Transporte de Membrana/genética , Especificidad de Órganos , Floema/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Semillas/metabolismo
18.
Plant J ; 70(5): 783-95, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22283708

RESUMEN

Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M(2) seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion, are necessary to induce the transcription of sulfate assimilation genes during early cadmium stress.


Asunto(s)
Arabidopsis/enzimología , Cadmio/farmacología , Retroalimentación Fisiológica , Glutatión Sintasa/metabolismo , Glutatión/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Alelos , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Clonación Molecular , Inducción Enzimática , Metanosulfonato de Etilo/farmacología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Prueba de Complementación Genética , Glutatión Sintasa/genética , Luciferasas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Mapeo Físico de Cromosoma/métodos , Mutación Puntual , Regiones Promotoras Genéticas , Especies Reactivas de Oxígeno/farmacología , Plantones/efectos de los fármacos , Plantones/enzimología , Sulfatos/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Transcripción Genética
19.
Curr Opin Plant Biol ; 14(5): 554-62, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21820943

RESUMEN

Iron, zinc, copper and manganese are essential metals for cellular enzyme functions while cadmium, mercury and the metalloid arsenic lack any biological function. Both, essential metals, at high concentrations, and non-essential metals and metalloids are extremely reactive and toxic. Therefore, plants have acquired specialized mechanisms to sense, transport and maintain essential metals within physiological concentrations and to detoxify non-essential metals and metalloids. This review focuses on the recent identification of transporters that sequester cadmium and arsenic in vacuoles and the mechanisms mediating the partitioning of these metal(loid)s between roots and shoots. We further discuss recent models of phloem-mediated long-distance transport, seed accumulation of Cd and As and recent data demonstrating that plants posses a defined transcriptional response that allow plants to preserve metal homeostasis. This research is instrumental for future engineering of reduced toxic metal(loid) accumulation in edible crop tissues as well as for improved phytoremediation technologies.


Asunto(s)
Arsénico/metabolismo , Cadmio/metabolismo , Plantas/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Homeostasis/genética , Fitoquelatinas/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Semillas/metabolismo , Transducción de Señal , Factores de Transcripción , Vacuolas/metabolismo
20.
J Biol Chem ; 285(52): 40416-26, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20937798

RESUMEN

Phytochelatins mediate tolerance to heavy metals in plants and some fungi by sequestering phytochelatin-metal complexes into vacuoles. To date, only Schizosaccharomyces pombe Hmt1 has been described as a phytochelatin transporter and attempts to identify orthologous phytochelatin transporters in plants and other organisms have failed. Furthermore, recent data indicate that the hmt1 mutant accumulates significant phytochelatin levels in vacuoles, suggesting that unidentified phytochelatin transporters exist in fungi. Here, we show that deletion of all vacuolar ABC transporters abolishes phytochelatin accumulation in S. pombe vacuoles and abrogates (35)S-PC(2) uptake into S. pombe microsomal vesicles. Systematic analysis of the entire S. pombe ABC transporter family identified Abc2 as a full-size ABC transporter (ABCC-type) that mediates phytochelatin transport into vacuoles. The S. pombe abc1 abc2 abc3 abc4 hmt1 quintuple and abc2 hmt1 double mutant show no detectable phytochelatins in vacuoles. Abc2 expression restores phytochelatin accumulation into vacuoles and suppresses the cadmium sensitivity of the abc quintuple mutant. A novel, unexpected, function of Hmt1 in GS-conjugate transport is also shown. In contrast to Hmt1, Abc2 orthologs are widely distributed among kingdoms and are proposed as the long-sought vacuolar phytochelatin transporters in plants and other organisms.


Asunto(s)
Cadmio/metabolismo , Mutación , Fitoquelatinas/metabolismo , Schizosaccharomyces/enzimología , Vacuolas/enzimología , Transportadoras de Casetes de Unión a ATP , Transporte Biológico Activo/efectos de los fármacos , Transporte Biológico Activo/fisiología , Cadmio/farmacología , Fitoquelatinas/genética , Schizosaccharomyces/genética , Vacuolas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...